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Abstract—Active measurements on network paths provide end-
to-end network health status in terms of metrics such as band-
width, delay, jitter and loss. Hence, they are increasingly being
used for various network control and management functions on
the Internet. For purposes of network health anomaly detection
and forecasting involved in these functions, it is important to
accurately model the time-series process of active measurements.
In this paper, we describe our time-series analysis of two typical
active measurement data sets collected over several months:
(i) routine, and (ii) event-laden. Our analysis suggests that
active network measurements follow the moving average process.
Specifically, they possess ARIMA(0,1,q) model characteristics
with low q values, across multi-resolution timescales. We vali-
date our model selection accuracy by comparing how well our
predicted values using our model match the actual measurements.

I. INTRODUCTION

Real-time applications such as videoconferencing and Grid
computing are being widely deployed on the Internet. To
cater to the end-user expectations, Internet Service Providers
(ISPs) need to regularly monitor their networks and perform
adaptation using various network control and management
functions such as path switching [1] and bandwidth-on-
demand [2]. These functions require collection of network
health measurements using active measurement tools such as
Ping, Traceroute, Iperf [3], Pathchar [4], and Pathrate [5].
The collected measurements are analyzed for network-wide
performance anomaly detection [6] and forecasting [7].

The degree of success achievable by such analyses greatly
depends on a sound understanding of the time-series process
of the active measurements. Analysis of active measurement
data sets is challenging because of the high variability caused
by factors such as end-user behavioral patterns, network
fault events and cross-traffic congestion. Studies such as [8]
and [9] have attempted to characterize and model the high
variability of network measurements. The variations manifest
in the form of short spikes, burst spikes and distinct plateaus,
which complicate the time series analysis. Network outages
due to failure of communication protocols lead to failure of
measurement probes, which result in missing data points in the
time series data collection. Hence, it is common to find gaps
in active network measurement data sets, which compound the
time series analysis challenges.

Further, different network control and management func-
tions require the models of measurements at multi-resolution
timescales. For example, measurements in time scales on
the order of few hours/days need to be modeled to forecast

the performance (e.g. delay or loss) of a network for the
subsequent few hours/days. Whereas, measurements in time
scales on the order of few months need to be modeled for
network planning that involves predicting bandwidth upgrades
that will cater to future user-demands. Also, anomaly detection
functions need the measurements to be modeled in time
resolutions corresponding to notable network events. Here,
the goal in anomaly detection is to identify how the model
changes due to a network event (e.g. route change). Such
an event detection may then lead to an anomaly-alarm for
problem resolution.

The work presented in this paper corresponds to the early
results of an extensive study we are conducting to address the
above challenges and requirements in modeling active network
measurements at multi-resolution timescales. Our ultimate
goal is to develop new perspectives for the on-going debate
about how to best model the high variability of network path
performance on the Internet. For the modeling, we use the
Auto-Regressive Integrated Moving Average (ARIMA) class
that is most commonly used for modeling chaotic time series.
Recent works such as [10] and [11] have successfully applied
ARIMA models to measure network traffic variability. Results
from [10] suggest that prediction accuracy of ARIMA models
can be improved when combined with a non-linear time series
model. Authors in [11] showed that seasonal ARIMA models
can be used to model and predict wireless network traffic
characteristics.

There are two main contributions of this paper: (i) we
present a systematic methodology to determine the ARIMA
model parameters that are most suitable for characterizing ac-
tive network measurements, and (ii) we evaluate the impact of
multi-resolution timescales due to both absence and presence
of network events on the ARIMA model parameters.

Our time-series analysis involves two phases. In the first
phase called the model training phase, we use the classical
decomposition procedure [12] on two typical active measure-
ment data sets: (i) “routine”, and (ii) “event-laden”, that are
part of a large dataset collected over several months. The
data sets were collected using OSC’s ActiveMon software [13]
that orchestrates active measurement probes and collects the
measurements into a central database. The routine data set
contains jitter measurements on a campus backbone network
path that has not experienced any notable network events. The
event-laden data set contains delay measurements on a regional
backbone network path showing noticeable plateaus caused by
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Fig. 1. ActiveMon System Setup

multiple route-change network events. In the second phase
called the model validation phase, we evaluate our model
selection accuracy by evaluating the forecasting ability of our
model. In other words, we compare how well our predicted
values using our model match the actual measurements. The
actual measurements correspond to a portion of measurements
that were held-back in the model training phase.

The remainder of this paper is organized as follows: Sec-
tion II describes the data sources and modeling methodology.
Section III presents the time-series analysis results and related
discussions. Finally, Section IV concludes the paper and
suggests future work.

II. MODELING METHODOLOGY

A. Data Sources

The “routine jitter measurement” and “event-laden delay
measurement” data sets used in this study are part of a large
data set that was collected by active measurement probes over
several months. The active measurements were collected over
three hierarchically different Internet backbone paths: campus,
regional and national paths [13]. The campus path refers to a
network path between a Computer Science Lab (OSUL) at
The Ohio State University and Ohio Supercomputer Center’s
(OSC) border router for OSU campus (OSUB); only OSU
campus network backbone routers were present in between,
along this path. The regional path refers to a network path
between OSUB and border router of University of Cincinnati
(UOCB); only OSCnet backbone routers were present in
between, along this path. Note that OSCnet is the ISP for
both OSU and UOC. The national path refers to a network
path between OSUB and a Computer Science Lab (NCSL)
at North Carolina State University; backbone routers of two
regional and one national provider were present in between,
along this path.

The measurement probes used OSC’s “ActiveMon” [13]
system setup shown in Figure 1 for measurement data col-

lection and database storage. ActiveMon consists of two main
components: (i) node, and (ii) root. The node refers to one
or more measurement servers co-located with a core router
and associated switch at a strategic point within a network
being monitored. High-precision one-way delay measurements
are obtained using CDMA devices attached to a measurement
server. The node servers host various active measurement tools
for network path measurements between any two nodes. The
network-wide measurements are centrally collected at a root
server that contains a database along with a webserver. Various
scripts at the root server analyze and visualize the collected
data as required by the network administrators. The root
server also hosts a scheduler that is responsible for scheduling
the network-wide active measurements without measurement
conflicts and with measurement regulation [14].

The routine jitter measurement data set shown in Figure 2
was obtained on the OSUB to UOCB network path using the
Iperf tool [3] over a two-month period. The UDP measurement
probing feature was used in Iperf tool with a peak bandwidth
of 768 Kbps for the probe traffic. The network operation’s
logs indicate that there were no major network events during
the two-month period of jitter measurement collection. The
event-laden delay measurement data set shown in Figure 3 was
obtained on the OSUB to OSUL network path using the Ping
tool over a six-month period. The network operation’s logs
indicate that four route-change events occurred due to various
network management activities involved in transitioning of the
campus traffic from an old ATM network to a new IP network.

Fig. 2. Plot of Jitter Measurements Data

B. Classical Decomposition Procedure

Figure 4 shows the classical decomposition procedure [12],
specifically the Box-Jenkins modeling methodology followed
in this paper. The first step in modeling is to visually inspect
the data set to verify presence of any seasonal, or time-based
trends. Such an inspection is helpful in reducing the model
search space. If necessary, the data after the inspection is
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Fig. 3. Plot of delay data

Fig. 4. Flowchart for Box-Jenkins model identification

cleaned and transformed. Further, any notable trends, season-
ality and cycles in the data need to be eliminated to obtain
stationary data. One of the popular techniques to eliminate
trend effects and achieve data stationarity is the differencing
technique, which we use in this paper. A one− lag differencing
transforms the data set by getting the differences between
consecutive data points. Note that differencing recursively
applied N times is referred to as N− lag differencing.

Next, a preliminary analysis of the data is performed using
the sample auto-correlation (ACF), and sample partial auto-
correlation (PACF). This analysis allows for selection of a set
of hypothetical models. Sample ACF measures the correlation
between different elements at a lag and is useful in determining
if the data follows a moving average (MA) process. Sample

PACF is more complex, and is useful in determining if the data
follows an auto-regressive (AR) process. Based on ACF, PACF
and other methods, a promising set of hypothetical models
corresponding to ARIMA(p,d,q) is selected, where p, d, and
q are integers (≥0), and refer to the order of MA, differencing,
and AR parts of the model respectively.

For each of the selected hypothetical models, the model
parameters are estimated. Next they are checked using a
“goodness-of-fit” test. If a model is deemed to be unfit,
an alternative model is selected. Ultimately the models that
show statistically significant fitness are selected. Amongst
these short-listed models, one best-fitting model needs to be
selected. For this, the typical approach is to use the “Akaike’s
information criterion” (AIC) as a quantitative metric for model
selection. The preferred model will have the lowest AIC
amongst all the short-listed models. Once we have selected
the model, the data sets are related to the selected model
to obtain insights into the underlying process involved in the
data generation. Finally, the selected model is used for various
purposes such as forecasting, and simulation in the domain of
the data sets.

III. ANALYSIS RESULTS AND DISCUSSION

In this section we first discuss our time-series analysis of the
routine jitter measurement data set. Next, we explain our time-
series analysis of the event-laden delay measurement data set.
Lastly, we present a parts versus whole time-series analysis of
the two data sets.

A. Analysis of Routine Jitter Measurements

1) Preliminary Data Examination: On visual inspection of
the jitter measurements data shown in Figure 2, we can observe
that the data exhibits no apparent trends or seasonality. There
are frequent spikes and dips in the data without any specific
patterns. The variance of the data seems to be bounded within
0.1 ms to 0.5 ms during the entire data collection. Hence,
stabilization of variance using transformation of the data is
not necessary.

Inspecting the actual data file, there were a total of 493
data points. All the data points had a constant two-hour inter-
sampling period. However, there was an 18 hour gap in the
data collection. It is common for network measurements data
to have gaps due to factors such as downtimes of measurement
servers or network outages that stall measurements collection.
However, given that this gap corresponds to less than 10
data points, we can expect the missing data to have minimal
influence on the model.

We split the jitter measurements data set into two parts. The
first part contains n−m = 469 (n = 493; m = 24) observations,
which are used as part of the “training data set” for estimation
and model building. The second part with m = 24 observations
is used as a “test data set” for computing measures of predic-
tive accuracy of the selected model. Note that the following
model selection, diagnostics and other analyses are done on
the training data set. The test data set is held-back to verify the
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power of the model by comparing the predicted measurements
and their confidence bounds with the actual measurements.
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Fig. 5. ACF (a) and PACF (b) of the jitter data set

2) ACF and PACF: Figures 5(a) and (b) show the ACF
and PACF of the jitter measurements, respectively. From the
ACF plot, we can notice that there is no indication of MA(q)
since there is no clear cut-off at any lag. Also since the ACF
is not decaying exponentially, there is no indication of AR(p).
Looking at the PACF plot, again it is not possible to conclude
whether an MA(q) or AR(p) model would be suitable. This
suggests that there are inherent trends in the data that are not
visually noticeable. We proceed with differencing to remove
any inherent trends in the data.
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Fig. 6. ACFs for First-order, Second-order and Third-order Differencing

3) Differencing: One-lag differencing of the jitter measure-
ments shows indications of MA(2). Next, we verify whether
higher order differencing i.e., second-order and third-order
differencing is required on the data set. Figure 6 shows the

differenced data and their corresponding ACFs. The autocor-
relation values are greater than -0.5 at lag1 for second-order
and third-order differencing, which indicates effect of over-
differencing. Hence, we conclude that first-order differencing
is sufficient on the data set.
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Fig. 7. ACF and PACF of jitter dataset after differencing, (a) and (b)
respectively

Figures 7(a) and (b) show the ACF and PACF plots of one-
lag differenced jitter data, respectively. The ACF plot clearly
indicates that the process might be MA(2) since there is a sharp
cut-off after lag-2. Further, the PACF is decaying exponentially
that eliminates AR process possibility.
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Fig. 8. AIC versus order of MA(q)

4) Model Fitting: To confirm our MA(2) observation, we
calculate AIC as a function of model sizes i.e., MA (q) with q
from 1 to 10. Figure 8 shows the plot of AIC versus the order
of MA. The AIC values do not show a “decrease and increase”
pattern that clearly indicates the q-value of MA that results in
the minimum AIC. Given that the AIC dips with the increase in
q-values, we can note that there is no significant minimization
of AIC as the q value increases. Hence, we can conclude that
MA(1) is a suitable model for the jitter measurements data.

To double-check if our model selection of MA(1) is correct,
we calculate AIC for ARMA(1,1), ARMA(1,2), ARMA(2,1)
and ARMA(2,2) models. Table I shows the obtained AIC
values. We can see that the AIC values of ARMA(1,1) are
comparable to AIC value of MA(1) and the AIC values do
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not significantly decrease with the increase in the model
complexity. Hence, we can further conclude that MA(1) is
a suitable model for the jitter measurements data.

ARMA Order AIC
11 -1611.728
12 -1609.730
21 -1609.755
22 -1609.794

TABLE I
AIC VALUES FOR ARMA(P,Q) WHERE P=1,2 AND Q=1,2

To further verify the correctness of the MA(1) model
selection, we compare the significance of the parameter values
of MA(1) and other higher orders. For this, we inspect whether
the 95% CI values (θx ± 1.96×σθx ) of MA(1), MA(2) and
MA(3) contain zero. Table II shows the 95% CI values for
three θ parameters of the MA model. We can note that
the 95% CI values of θ1 are significant because they do
not contain zero. However, the 95% CI values of θ2 and
θ3 contain zero, suggesting that we cannot reject the null
hypothesis that MA(1) is not the suitable model. Hence,
we can confirm that MA(1) with one-lag differencing or
equivalently ARIMA(0,1,1) is the suitable model for the jitter
measurements data.

Parameter Value 95% CI
θ1 -0.9440 (−0.85286,−1.03514)
θ2 -0.0123 (−0.135584,0.110984))
θ3 -0.0114 (−0.10744,0.08464)

TABLE II
TABLE OF 95% CI VALUES FOR MA MODEL PARAMETERS

5) Diagnostic Checking: Figure 9 shows the diagnostic
checking using the selected MA(1) model. From the diagnos-
tics of the fitted model we can observe that the residuals look
like noise values. The ACF of the residuals indicate that the
residuals are uncorrelated and resemble a white noise process.
The “Ljung-Box plot” shows that the model is significant at
all lags and that the residuals are not just correlated, they are
also independent. Above observations conclude that the MA(1)
model has captured the structure of the jitter measurement
data, and the residuals are just left-over noise.

Based on above analysis, the model for the jitter measure-
ment data is as follows:

Xt = Zt +(−0.9440)Zt−1

where Zi ∼White Noise(0,0.01028) and Xi = diff( jitteri)

6) Prediction Based on MA(1) Model Fitting: In this
section, we validate our model selection by evaluating the
prediction accuracy of our selected MA(1) model. For this, we
compare the prediction estimates with the actual measurements
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Fig. 9. Diagnostics of fitted model

that were held back i.e., m = 24 data points, in the original
training data set.
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Fig. 10. Prediction using the selected MA(1) Model (a) and actual
measurement data overlaid with predicted values and prediction confidence
intervals (b)

Figure 10(a) shows the prediction values and the predic-
tion confidence intervals based on the training data set. Fig-
ure 10(b) shows the actual measurement or test data overlaid
with the predicted values and prediction confidence intervals.
Comparing the predicted values and the actual measured
values, we can note that the prediction is working well.
Except for a couple of measurements, most of the actual
measurements lie within the prediction confidence bounds. The
outlier measurements can be attributed to unusual fluctuations
in the jitter measurements that are not uncommon given the
nature of the data set.
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B. Analysis of Event-laden Delay Measurements

1) Preliminary Data Examination: On visual inspection of
the delay measurements data shown in Figure 3, we can clearly
see four distinct plateaus. Recall that these plateaus are the
result of network route change events. Inspecting the actual
data file, there were a total of 2164 data points. The data was
periodic for the most part, however, there were minor gaps of
data i.e., data was missing for a day or less in a few cases.
Since data size is quite large, we can expect that such gaps
have minimal influence on the model.

We split the delay measurements data into two parts.
The first part contains n−m = 2100 (n = 2164; m = 64)
observations, which are used as part of the “training data
set” for estimation and model building. The second part with
m = 64 observations is used as a “test data set” for computing
measures of predictive accuracy of the selected model. Note
that the following model selection, diagnostics and other
analyses are done on the training data set. The test data set is
held-back to verify the power of the model by comparing the
predicted values and their confidence bounds with the actual
measurements.
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Fig. 11. ACF (a) and PACF (b) of the delay dataset

2) ACF and PACF: Figures 11(a) and (b) show ACF and
PACF of the delay measurements, respectively. It is clear from
the ACF plot that the auto-correlations are not damping sug-
gesting that the underlying process may not an MA process.
PACF of the untransformed data shows damping of auto-
correlations, which suggest that the AR process might be a
possibility. Further, by observing the PACF damping till lag
7, there is indication of an AR(7) process. Given that the data
is showing inherent trends, we proceed with differencing.

3) Differencing: Figure 12 shows the plot of one-lag dif-
ferencing on the delay measurements data to remove any
trend in the series. Second-order and third-order differencing
showed effects of over-differencing. Consequently, we limit
ourselves to first-order differencing on the data set. From
the one-lag differencing, we observe that there is neither a
trend nor seasonality in the time-series. Hence, we can infer
that the process is more or less stationary. To confirm our
intuition, we plot the ACF of one-lag differencing of the delay
measurements data.

Figures 13(a) and (b) show the ACF and PACF of one-lag
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Fig. 12. Plot of 1-lag differencing of delay series
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Fig. 13. ACF (a) and PACF (b) of the 1-lag differenced delay dataset

difference of the delay measurements data, respectively. The
damping in the ACF plot clearly indicates that the process is
an MA(2) process since there is a sharp cut-off after lag-2.
Further, PACF is decaying exponentially that eliminates AR
process possibility.

4) Model Fitting: To confirm our MA(2) observation, we
calculate AIC as a function of model sizes i.e., MA (q) with
q from 1 to 6. Figure 14 shows the plot of AIC versus
order of MA. The AIC values show a clear “decrease and
increase” pattern that clearly indicates the q-value of 3 has the
minimum AIC. Consequently, the MA(3) process explains the
structure of the process without added complexity of higher
order models. Hence, we can conclude that MA(3) is a suitable
model for the delay measurements data.

Parameter Value 95% Conf. Interval
θ1 -0.4876 (−0.5303,−0.4449)
θ2 -0.0064 (−0.0552,+0.0424)
θ3 -0.0564 (−0.0983,−0.0145)

TABLE III
TABLE OF CONFIDENCE INTERVALS OF PARAMETERS

To further verify the correctness of the MA(3) model
selection, we compare the significance of the parameter values
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Fig. 14. AIC versus order of MA(q)

of MA(3) by observing their confidence intervals. Table III
shows the confidence intervals for the three parameters of the
model. From the confidence intervals, it is clear that θ1 is
significant, since the 95% confidence interval does not include
0. But the confidence interval of θ2 includes 0, which would
have suggested MA(1) model instead of MA(3) model fitted.
However, if we observe confidence interval of θ3 it does
not contain zero. This indicates that we cannot reject MA(3)
model even though we might have rejected the MA(2) model.
Hence, we can confirm that MA(3) with one-lag differencing
or equivalently ARIMA(0,1,3) is the suitable model for the
delay measurements data.
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Fig. 15. Diagnostics of fitted model

5) Diagnostic Checking: Figure 15 shows the diagnostics
checking using the selected MA(3) model. From the diagnos-
tics of the fitted model, we make the following observations:

• The residuals do not exhibit any apparent pattern. They
resemble a noise process whose mean is 0. We can also
note that there are few large residuals near the plateau
transition points.

• ACF of the residuals indicates that the residuals are
uncorrelated. After the initial spike all correlations are
near 0. Since the residuals have zero mean and are
uncorrelated, this means that the residuals represent a
white noise process.

• Ljung-Box plot shows that the model is significant at all
lags and that the residuals are not just correlated, but
they are also independent. This suggests that the residuals
resemble an iid noise process.

Above observations conclude that the MA(3) model has cap-
tured the structure of the delay measurement data, and the
residuals are just left-over noise.

Based on above analysis, the model for the delay measure-
ment data is as follows:

Xt = Zt +(−0.4876)Zt−1 +(−0.0064)Zt−2 +(−0.0564)Zt−3

where Zi ∼White Noise(0,0.01028) and Xi = diff(delayi)
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Fig. 16. Prediction using the selected MA(3) Model (a) and test data overlaid
with predicted values and prediction confidence intervals (b)

6) Prediction: In this section, we validate our model se-
lection by evaluating the prediction accuracy of our selected
MA(3) model. For this, we compare the prediction estimates
with the actual measurements that were held back i.e., m = 64
data points, in the original training data set.

Figures 16(a) and 16(b) show the original model overlaid
by prediction and confidence intervals. Figure 16(a) shows
the trailing part of the training data and actual measurements
or test data for 10 values with confidence bounds. To see if
the prediction is capturing the data, in Figure 16(b) we fit
first 24 points of prediction dataset and overlay the prediction
and confidence bounds for those 24 points. All the actual
measurements lie within the prediction confidence bounds.

C. Parts Versus Whole Analysis

Herein, we present our multi-resolution time-series analysis
to determine the impact of multi-resolution timescales due to
both absence and presence of network events on the ARIMA
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model parameters. Due to space constraints, we do not show
the detailed time-series analysis below.

1) Jitter data analysis: For the jitter measurements data,
we choose a two-part resolution of the data separated by
the gap (corresponding to the 18 hours outage). Our aim is
to assess whether the two data portions also exhibit MA(1)
characteristics.

For the first data part, we observed that the time-series plot
does not show any apparent trends or seasonality. The ACF
plot clearly indicated an MA(1) process. We plotted the AIC
values for higher order MA and found the plot to be similar
to Figure 8, i.e., the first data part is an MA(1) process. For
the second data part, the time-series plot showed a slightly
decreasing trend. The ACF and PACF plots did not clearly
indicate MA(q) or AR(p) characteristics. Upon applying one-
lag differencing to remove any inherent trends in the data, the
ACF of the differenced data set indicated MA(2) with sharp
cut-off at lag 2. However, upon plotting the AIC values for
higher order MA, we found the plot to be similar to the AIC
values plot for the whole data, i.e., the second data part is also
an MA(1) process.

2) Delay data analysis: For the delay measurements data,
we choose a four-part resolution of the data separated by the
plateaus viz., d1, d2, d3, d4 shown in Figure 3 (corresponding
to the route change network events). Our aim is to assess how
the process changes in the four data portions.

ACF plots for the four parts of delay measurement data
indicated interesting characteristics. For the parts d1 and d3,
ACF damped quickly, which suggests MA(1). On the other
hand, for the parts d2 and d4 ACF does not damp, hence
we reject the MA model for them. PACF plots for the four
parts also had interesting characteristics i.e., PACF of d1
and d3 damped after one-lag differencing indicating AR(1)
model. Whereas, PACF of d2 and d4 damped after lag 12
suggesting AR(12) model. The ACF and PACF plots of the
differenced data also showed the same behavior as that of the
non-differenced data. Hence, the plateau parts had different
models in comparison with the whole data set.

From the above analysis of jitter and delay measurement
data sets, we can observe that the “parts resemble the whole”
when there are no network events. However, if network events
are present, the underlying process changes, which can be
leveraged for anomaly detection purposes.

IV. CONCLUSION AND FUTURE WORK

In this paper, we presented a systematic time-series analysis
of active network measurement data sets whose inherent
characteristics included: sudden fluctuations due to network
traffic transients, network events and missing data due to
outages. Our analysis presented new insights into the modeling
of the high variability in the network path performance on the
Internet.

Results from our extensive time-series analysis using di-
agnostics, 95% CI checking and prediction concluded that
it is reasonable to characterize network performance on the

Internet using ARIMA(0,1,q) models. We found that first-
order differencing of active network measurement data sets can
remove inherent trends (in routine data set) as well as apparent
plateau trends (in event-laden data set). Also, MA(q) models
with reasonably low q values are suitable for even plateau-
laden data. Consequently, network performance data sets have
“too much memory” and thus auto-regressive models that are
dependent on present and past values may not be well-suited.
Another notable observation was that the “parts resemble the
whole” in the absence of any major network events i.e., the
model selection is comparable if we break down the entire data
into parts and analyzed each of the individual parts separately.
Whereas, in the presence of network events causing plateaus,
the underlying process changes in the parts.

As part of our future investigations, our goal is to apply
similar methodology on several other data sets collected using
ActiveMon. From this, we hope to determine the underlying
process changes across typical short, medium and long time-
resolutions - both in the presence and absence of various
network events. Ultimately, we believe such analysis can be
leveraged in network control and management schemes to
obtain better prediction accuracy and lower anomaly detection
false-alarms.
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