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Abstract

Monitoring network status such as end-to-end delay,
jitter, and available bandwidth is important to support
QoS-sensitive applications and timely detection of network
anomalies like Denial of Service attacks. For this purpose,
Internet Service Providers (ISPs) have started to instrument
their networks with Network Measurement Infrastructures
(NMIs) that periodically run active measurement tasks using
measurement servers located at strategic points in their net-
works. However, one problem that most network engineers
have overlooked is the measurement conflict problem. Since
active measurement tasks actively inject test packets to col-
lect measurements along network paths, running multiple ac-
tive measurements at the same time over the same path could
result in misleading reports of network performance. We call
this phenomenon a measurement conflict. Our recent obser-
vation of such measurement conflict motivates us to form a
measurement task scheduling problem of meeting periodic-
ity requirements, where real-time scheduling algorithms can
play a role. The scheduling problem, however, is not exactly
same as any of the existing scheduling problems in the real-
time literature, because the problem involves multiple mea-
surement servers running multiple measurement tasks whose
conflict dependency propagates along the chains of paths.
For this problem, we propose to use an EDF (Earliest Dead-
line First) heuristic but allowing “Concurrent Executions”
if possible, to construct an offline schedule for a given mea-
surement task set. Also, we propose a novel mechanism to
flexibly use the offline schedule for minimizing the response
time of dynamic on-demand measurement jobs. Further, we
implement and deploy our scheduling algorithms in a real
working NMI for monitoring Internet 2 Abilene network.

∗This work has been supported in part by The Ohio Board of Regents.
†The corresponding author is Chang-Gun Lee.

1 Introduction

It has become a norm for Internet Service Providers (ISPs)
to instrument their networks with Network Measurement In-
frastructures (NMIs) [6, 7, 8, 9] for continuous monitoring
and estimation of network-wide status. For this, they use
active measurement techniques that actively inject probing
packets to collect useful measurements such as end-to-end
delay, jitter, loss, bandwidth, etc. The active measurement
techniques range from traditional simple tools such as Ping
and Traceroute for measuring round-trip delay and topology
to more advanced tools such as H.323 Beacon [1], Multi-
cast Beacon [2], Iperf [3], Pathchar [4] and Pathload [5] that
use sophisticated packet probing techniques. The measure-
ment data obtained from the above tools can be used for net-
work status estimation such as Network Weather Forecast-
ing [11] and in turn useful for QoS-sensitive applications
such as videoconferencing and for timely detection of net-
work anomalies like Denial of Service attacks.

Figure 1. Iperf test results with and without
mutual exclusion of measurements

For the correctness of the network status estimation,
the periodicity of measurements is important. Thus, most
NMIs periodically run measurement tools using measure-
ment servers located at strategic points. However, one



problem we recently observed is the measurement conflict
problem, which has been overlooked by most network en-
gineers. Since active measurement tools consume non-
negligible amount of network resources for injecting probing
packets, if two or more measurement tasks run concurrently
over the same path, they will collide with each other and thus
could produce misleading reports.

Our experiment in Figure 1 illustrates the measurement
conflict problem. In the experiment, Iperf jobs measure the
available bandwidth between two measurement servers con-
nected by a LAN Testbed with a total of 1500 Kbps band-
width. The background traffic is an H.323 videoconferenc-
ing session at 768 Kbps dialing speed and thus the remain-
ing bandwidth should be approximately 732 Kbps. When
Iperf jobs run back-to-back with mutual exclusion (shown in
the left-half of Figure 1), their measurements are in agree-
ment with our expectation. However, concurrently running
multiple Iperf jobs without mutual exclusion (shown in the
right-half of Figure 1) causes misrepresentation of remain-
ing bandwidth, merely due to conflicts of multiple Iperf jobs.

This observation motivates a scheduling problem of mea-
surement tasks for orchestrating them to prevent conflicts
while still satisfying their periodicity requirements. The na-
ture of the problem is similar to real-time scheduling even
though the time granularity of periods (order of minutes) is
much coarser than that of the classical real-time systems.
The measurement scheduling problem, however, is not the
same as any of real-time scheduling problems in the litera-
ture in the following two senses: First, more than one mea-
surement jobs can be scheduled at the same time on the same
server as long as they can produce the correct measurement
data. Second, each measurement job affects multiple mea-
surement servers and their connection paths, thus propagat-
ing its conflict dependency with others all across the mea-
surement server topology.

Our goal in this paper is to apply the scheduling tech-
niques developed in the real-time community to the above
measurement task scheduling problem with necessary mod-
ifications. More specifically, the contributions of this paper
can be summarized as follows:

• We propose an offline scheduling algorithm based on
the EDF principle but allowing concurrent execution if
possible, which can significantly improve the schedula-
bility of a given measurement task set,

• We propose an online mechanism that can steal the
maximum possible slack from the offline calculated
schedule to serve on-demand measurement requests as
soon as possible without violating the periodicity re-
quirements of all the given measurement tasks,

• We actually implement an NMI equipped with the
proposed scheduling mechanisms to measure the real-
working network, Internet 2 Abilene network.

Figure 2. Measurement-Servers Topology con-
structed for a set of network paths

The rest of this paper is organized as follows: The next
section formally defines the measurement task scheduling
problem. Section 3 presents our algorithms to schedule of-
fline and online measurement tasks. Section 4 shows our
experimental results from both simulations and actual imple-
mentation. Section 5 summarizes the related work. Finally,
Section 6 concludes the paper.

2 Problem Description and Terminology

An ISP deploys measurement servers at strategic points
to continuously estimate the network-wide status. The mea-
surement servers are attached to core routers as shown in Fig-
ure 2 to measure the paths to other servers. The paths to be
measured are specified by the measurement topology, which
can be formally defined by a graph G = (N,E) where N
is the set of measurement servers and E is the set of edges
between a pair of two servers. Each edge represents a path
between two servers to be measured. Figure 2 shows an ex-
ample complete graph that consists of measurement servers
N = {A,B,C,D,E} on the Internet 2 Abilene network
and edges for all pairs of A,B,C,D,E. This measurement
server topology implies that the ISP wants to measure every
path in between each pair of A,B,C,D,E.

Another input is the set of measurement tasks. Each mea-
surement task τi is specified to measure a path from a source
server srci to a destination server dsti using an active mea-
surement tool tooli. The measurement should be periodically
repeated with period pi. The execution time of a single mea-
surement instance, called a measurement job, is denoted by
ei. Then, a measurement task can be represented using the
similar notion of a real-time periodic task as follows:

τi = (srci, dsti, tooli, pi, ei).

The set of all offline specified measurement tasks is denoted
by

Γ = {τ1, τ2, · · · , τn}.
In addition to such offline specified measurement tasks,

there can be an on-demand measurement request to quickly



Figure 3. Comparison of scheduling active
measurement tasks and operating system
tasks

measure a path for admission control of a dynamically ar-
riving QoS-sensitive session or for dynamic selection of an
alternative path adapting to network status changes. Such an
on-demand measurement request is denoted by

Jk = (srck, dstk, toolk, ek).

Our problem is to schedule the offline specified periodic
measurement tasks and on-demand measurement requests
on top of a given measurement server topology. Here, we
have to clearly differentiate the measurement-level schedul-
ing from the traditional OS-level scheduling as depicted in
Figure 3. A measurement job is a single execution of an ac-
tive measurement tool. During the execution, the tool can
inject a probe packet and can be suspended until it receives
a reply. When it receives the reply, it resumes to accumu-
late the reply and inject the next probing packet and so on.
The duration of such a single execution can last a few min-
utes to have an accurate measure. Although there can be
multiple suspends and resumes in OS-level scheduling, the
required duration of a single measurement can be given as
a constant number ei in the measurement-level scheduling.
The problem of measurement-level scheduling is to deter-
mine the times when we start a measurement tool and when
we stop it, not when the OS threads are context switched to
others.

For such a measurement-level scheduling problem, one
important constraint is mutual exclusive schedule of two
measurement jobs if they potentially collide. Since active
measurement tools can be CPU intensive for sophisticated
calculation and/or channel intensive for injecting a large
amount of probing packets, running two measurement tools

for an overlapped period over the same measurement server
or the same channel can cause a measurement conflict and re-
sult in misleading reports by the two tools. Figure 3(a) shows
an example of such conflict of two tools; one measures from
S1 to S2 and the other measures from S2 to S1 by injecting
a large amount of probing packets into the channels between
S1 and S2. Figure 3(b) shows a mutual exclusive schedule of
two jobs to avoid such conflict. Note that if two tools do not
conflict, for example, if they are neither CPU intensive nor
channel intensive, they can be scheduled concurrently with-
out any problem on the same channel and even on the same
server.

In addition to the mutual exclusion constraint to pre-
vent the measurement conflict, one additional constraint of
the measurement-level scheduling problem is the Measure-
ment Level Agreement (MLA). Utilizing excessive network
resources just for active measurements is not appropriate
since it will largely degrade the regular user traffic perfor-
mance. Thus, we need a regulation on the measurement traf-
fic. Since an end-to-end measurement could involve analyz-
ing data along network paths of multiple ISPs, we can envis-
age “measurement federations” in which many ISPs partici-
pate in inter-domain measurements based on MLAs for reap-
ing the mutual benefits of performing end-to-end path mea-
surements. MLAs could specify that only a certain percent-
age (1 - 5)% or only a certain number of bits per second (1-2)
Mbps of the network bandwidth in ISP backbones could be
used for measurement traffic, which can ensure the actual
application traffic is not seriously affected by measurement
traffic1. We use the notation ψ to denote the MLA specifica-
tion in an NMI. In the measurement-level scheduling prob-
lem, the maximum concurrent measurement jobs over the
same channel are constrained by ψ.

From the above inputs and constraints, the measurement-
level scheduling problem can be formally described as fol-
lows:

Problem: Given measurement topology G = (N,E) and
offline specified measurement task set Γ = {τ1, τ2, · · · , τn},
find the schedule of measurement jobs such that all deadlines
(equal to periods) can be met while preventing conflicts and
adhering to the MLA constraint ψ. For an on-demand mea-
surement request Jk, schedule it as early as possible with-
out violating deadlines of tasks in Γ, conflict constraint, and
MLA constraint.

3 Measurement Scheduling Algorithms

In this section, we first present an offline scheduling algo-
rithm to construct a schedule table for a given set of periodic
measurement tasks Γ = {τ1, τ2, · · · , τn}. Then, we present

1Since most active measurement tools have options to specify packet
sizes and bandwidth usage of a measurement test, simple calculations can
be used to determine how much of a network’s bandwidth will be used by a
given set of active measurements, over a certain period of time.
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Figure 5. No orchestrated schedule
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Figure 6. Orchestration based on single pro-
cessor non-preemptive EDF schedule

an online algorithm to schedule an on-demand measurement
request Jk without missing deadlines of periodic tasks.

3.1 Offline Scheduling Algorithm

In our measurement scheduling framework, a central reg-
ulator collects all specifications of periodic measurement
tasks and builds a schedule table that determines times when
measurement jobs can start and stop at each server. To build
such a table, the first step is to make a task conflict graph by
combining the measurement topology G and the task set Γ.
Figure 4 shows an example problem. For the given task set,
we examine each pair of two tasks τi and τj to see if they
share the same source server, destination server or part of the
paths between source and destination servers. If so, the two
tasks may “potentially” conflict if scheduled concurrently. In
Figure 4, τ1 and τ2 share S2 and thus we add a potential de-
pendency edge between them in the potential task conflict
graph. τ2 and τ3 share the path and thus a dependency edge
is added. On the other hand, τ1 does not share any network
resource with τ3 and thus no edge is added. Even if two tasks
share network resources, they may not actually conflict de-
pending on the active measurement tools used. Based on our
empirical study, we could determine which two tools conflict
if they run concurrently. The result is summarized by the tool
conflict matrix in Figure 4. For example, Iperf and Pathchar
conflict if they run concurrently on the same server since both
intensively use server and channel resources for active mea-
surement. On the other hand, Ping just injects small prob-
ing packets and hence does not conflict with any other tools.
Considering the tool conflict matrix, the potential task con-
flict graph can be converted to the final task conflict graph as
in Figure 4(e). The edge between two tasks in the task con-
flict graph means that they should be scheduled in a mutual
exclusive manner, otherwise a conflict happens resulting in
misleading reports.

Now, we can consider only the task conflict graph to com-
pute the offline schedule. One obvious solution is to start
a measurement job at the source server at its release time
without considering mutual exclusion and MLA constraints.
Figure 5 shows such a schedule for the problem given in Fig-
ure 4. The schedule, however, causes a number of conflicts
that result in misleading report of the actual network perfor-
mance. Another approach is to run only a single measure-
ment job at any time instant using a non-preemptive EDF
scheduling algorithm. Figure 6 shows such a schedule for
the same problem. It can completely prevent the conflicts.
However, it does not allow concurrent execution of multiple
jobs even if they do not conflict, which degrades the schedu-
lability.

We aim at finding a schedule in between the two extremes
such that conflicts are completely prevented while maximiz-
ing the concurrent execution whenever possible. For this, we
propose the EDF-CE (i.e., EDF with Concurrent Execution)



algorithm that schedules measurement jobs in the EDF order
while allowing concurrent execution if jobs do not conflict.
The algorithm is formally described in the following:

EDF-CE: For the given task conflict graph, find the mea-
surement schedule during a hyperperiod

Input: task set Γ and task conflict graph
Output: start time stij and finish time ftij for each job τij

in a hyperperiod
begin procedure
1. Initialize rt list with the ordered list of all release times
in a hyperperiod
2. Initialize ft list = {} /* ordered list of finish times*/
3. Initialize pending job queue = {}
4. do
5. time = get the next scheduling time point from
rt list and ft list
6. add all newly released jobs at time to
pending job queue in EDF order
7. for each job τij in pending job queue in EDF order
8. if τij does not conflict with any of already
scheduled jobs and
9. scheduling τij at time does not violate MLA
constraint ψ
10. stij = time and ftij = time + ei

11. if ftij is later than the deadline of τij

12. return error /* infeasible task set */
13. end if
14. remove τij from pending job queue
15. add ftij to ft list in order
16. end if
17. end for
18. until time == hyperperiod
end procedure

The EDF-CE algorithm maintains the ordered list of re-
lease times rt list and the ordered list of finish times ft list.
Line 1 initializes rt list with all release times in a hyperpe-
riod. In Figure 7, the release times are 0, 20, 30, 40, 60,
80, 90, 100, and 120. Line 2 initializes ft list as empty
since no job is scheduled yet. In addition, the algorithm
maintains a pending job queue that holds all jobs released
but not scheduled, in the EDF order. Line 3 initializes it as
empty. The do-until loop from Line 4 to Line 18 progresses
the virtual time variable time until a hyperperiod while de-
termining the schedule at all scheduling time points, i.e., re-
lease times and finish times. Line 5 moves time to the next
scheduling time point. Then, Line 6 adds all newly released
jobs to the pending job queue. The for loop from Line 7
to Line 17 examines the pending jobs in the EDF order and
determines whether they can start at time without causing
any conflict and without violating MLA ψ (see Lines 8 and
9). If so, the job τij’s start time stij is determined as time,
its finish time is determined as time + ei in Line 10, and
it is removed from the pending job queue in Line 14. The
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Figure 7. EDF-CE Schedule

finish time ftij is added to ft list. Otherwise, the job is
kept in the pending job queue to be considered at the next
scheduling time point. Note that the algorithm tries to con-
currently start as many jobs as possible in the EDF order at
time as long as they neither conflict nor violate the MLA.
Figure 7(a) shows such EDF-CE schedule for the same prob-
lem of Figure 4. At time 0, τ31 is scheduled first since it has
the earliest deadline. The second earliest job τ41 can also
be concurrently scheduled even though it runs on the same
server S4 as τ31, since τ3 and τ4 have no conflict edge in the
task conflict graph of Figure 4(e). The third earliest deadline
job τ21, however, cannot start at the same time since it con-
flicts with τ31. On the other hand, τ11 can start since it does
not conflict with the overlapping jobs τ31 and τ41—no edge
between τ1 and τ3, τ4. The pending job τ21 is re-examined
at the next scheduling point, which is the finish time 5 of τ31

and τ41. At this time, τ21 conflicts with τ11 and thus cannot
be scheduled. τ21 can be eventually scheduled at time 10.
All the rest of the timeline is similarly filled in.

Once we find the EDF-CE schedule, we can convert it to
the measurement schedule table of each server considering
the source server of each job. Figure 7(b) shows the schedule
tables of all the five servers. Note that τ31 and τ41 start at the
same time on the same server S5 since they do not conflict in
the measurement level, which clearly differs from the tradi-
tional real-time job scheduling problems. Such constructed
schedule tables are transferred to corresponding servers so
that they can start and stop the planned measurement jobs.

3.2 On-line Scheduling of On-Demand Measure-
ment Requests

At the run time while each server is executing periodic
measurement tasks according to the pre-computed schedule
table, a network engineer can request an on-demand mea-
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Figure 8. Recursive pushing for maximum
slack calculation

surement Jk. We assume that such a request is received by
the central regulator for the sake of simplicity. However,
using a distributed agreement mechanism [12, 13], the on-
demand request scheduling algorithm described below can
be realized in a decentralized way without limitation.

Upon the arrival of an on-demand request Jk =
(srck, dstk, toolk, ek), our goal is to serve it as soon as pos-
sible without missing any deadlines of periodic measurement
tasks. For this, we propose a method to calculate the maxi-
mum slack using a recursive pushing mechanism. The basic
idea can be best illustrated by Figure 8 that shows the same
EDF-CE schedule as above. Suppose that an on-demand re-
quest Jk = (S2, S3, Iperf, 10) arrives at time 50. It conflicts
with τ1, τ2, and τ3 as shown by the modified task graph. The
central regulator cannot allow Jk to start at time 50 since it
conflicts with τ22 and τ22 cannot be preempted once started.
Thus, the central regulator calculates the maximum slack
from time 55 that can be continuously used for Jk. For this,
the central regulator calls push(τ12) and push(τ34) to deter-
mine how much τ12 and τ34 can be pushed to make the max-
imum slack for Jk. The push operation is recursive. To de-
termine the maximum push of τ12, we first have to know the
maximum push of the dependent job τ23. Thus, push(τ12)
recursively calls push(τ23). On the other hand, τ34 does not
conflict with any other job while being pushed up to its dead-
line d34 = 80. Such job is called a terminal job, and its new
pushed finish time new ft34 can be simply given by its dead-
line d34 and new start time new st34 is new ft34 − e3. The
push operation is formally defined as follows:

push: return the new start time of input jobs after maximum
push

Input: τij

Output: new start time after maximum push new stij
begin procedure
1. if τij has no conflicting jobs scheduled up to dij

/* terminal node */
2. new finish time new ftij = dij

3. new start time new stij = new ftij − ei

4. else /* not terminal node */
5. new finish time new ftij = dij

6. for each conflicting task τi′j′

7. new ftij = min (new ftij , push(τi′j′ ))
8. end if
9. new start time new stij = new ftij − ei

10. end if
11. return new stij
end procedure

This algorithm returns the new start time new stij after
maximally pushing τij . If τij is a terminal node, Lines 2
and 3 can simply calculate the new stij from the deadline.
Otherwise, Lines 6, 7, and 8 recursively call push for all de-
pendent jobs to figure out the minimum new start time of all
dependent jobs, which in turn gives the minimum new finish
time new ftij of τij . With new ftij , Line 9 calculates the
new start time as new stij = new ftij − ei. Finally, Line
11 returns new stij .

Considering new stij , we can calculate the maximum
slack that can be used for the on-demand request Jk start-
ing from time t. If the maximum slack is larger than the
required execution time ek, the central regulator sets time t
as the start time of Jk and push dependent periodic jobs as
needed. The piece of schedule affected by Jk (see “schedule
replacement” in Figure 8) is transferred to the corresponding
servers so that they can temporarily use the updated sched-
ule piece instead of the original schedule, to accommodate
Jk. If the maximum slack at time t is not larger than ek, the
central scheduler examines the next scheduling point to re-
calculate the maximum slack and so on, until it finds enough
slack. In practice, it takes time to calculate the maximum
slack and transfer the updated schedule piece to the servers.
Such delay is order of milliseconds as will be shown Sec-
tion 4. Thus, our algorithm can treat the maximum delay as
a lead time and can start calculating the maximum slack from
the current time plus the maximum delay. This way, the up-
dated schedule piece can be used only after it is received by
all the servers in a synchronized way.

This recursive push algorithm allows almost immediate
service of on-demand requests most of time. As a result, the
average response time of on-demand requests can be min-
imized without missing deadlines of periodic measurement
tasks.

4 Experimental Results

In this section, we evaluate the performance of our mea-
surement scheduling algorithms. We first perform simula-
tions with synthetic measurement tasks to show the maxi-



mum schedulability by the EDF-CE algorithm and the av-
erage response times of on-demand requests by the recursive
pushing algorithm. Then, we present performance evaluation
results on an actual Internet testbed.

4.1 Performance Evaluation Results using Syn-
thetic Tasks

Our synthetic task set is comprised of four periodic active
measurement tasks τ1, τ2, τ3 and τ4. The period pi of each
task τi is randomly generated from [1000, 10000]. The ex-
ecution time ei of each task τi is randomly generated from
[100, 999]. The task conflict graph of the four tasks is also
randomly created using a parameter called a conflict factor.
The conflict factor represents the probability that there is a
conflict edge between any two tasks. Therefore, when the
conflict factor is 1, the task conflict graph is fully connected.
If the conflict factor is 0, there is no edge between tasks.

For each sample task set and task conflict graph, we use
the maximum schedulable utilization

∑4
i=1 ei/pi as the per-

formance metric. We determine the maximum schedulable
utilization by gradually increasing execution times ei until
the scheduling algorithms fail to construct a feasible sched-
ule.

We compare three scheduling algorithms:

• No-orchestration that schedules measurement jobs at
their release times without considering measurement
conflicts,

• EDF that schedules only one measurement job at a time
using the non-preemptive EDF algorithm just like a sin-
gle processor EDF scheduling, and

• EDF-CE that is proposed in this paper.

Figure 9 shows the maximum utilization as increasing the
conflict factor. Here, we assume a large MLA ψ and thus it
is not a bottleneck when finding the schedule. Each plotted
point in the figure is the average of 1000 random sample task
sets. EDF’s maximum utilization is constantly bounded un-
der 100% regardless of the conflict factor since it does not al-
low concurrent execution even if possible. On the other hand,
our EDF-CE algorithm can maximally utilize the concurrent
execution whenever possible. When the conflict factor is
zero, EDF-CE allows concurrent execution of all four tasks.
This is similar to scheduling the four tasks on four indepen-
dent processors. Thus, the maximum utilization reaches up
to 400%. As the conflict factor increases, the maximum uti-
lization gradually decreases. When the conflict factor is 1,
i.e., when all four tasks conflict each other, EDF-CE auto-
matically degenerates to the single processor EDF and hence
gives the maximum utilization of 100%. The result shows
that EDF-CE is leveraging the “maximal but only possible”
concurrent execution by explicitly considering the conflict
dependency among tasks. The no-orchestration approach al-
ways gives the maximum utilization of 400% since all four

Figure 9. Maximum utilization by three
scheduling algorithms

Figure 10. Effect of MLA ψ and conflict factor
to EDF-CE

tasks can be concurrently executed ignoring the conflict de-
pendency. This, however, causes many conflicts as will be
shown in Section 4.2 resulting in many misleading reports of
actual network performance.

Figure 10 illustrates how the maximum utilization of
EDF-CE is bounded by the MLA constraint ψ and conflict
factor. As expected, higher values of ψ accommodate a larger
number of concurrent jobs and hence produce higher maxi-
mum utilization. For a ψ value, the maximum utilization is
constant up to a certain point of the conflict factor and then
starts decreasing. Such a trend explains that ψ is the bottle-
neck when the conflict factor is small, whereas the conflict
dependency becomes the bottleneck when the conflict factor
is large.

To study the performance of the “recursive push” algo-
rithm for handling on-demand measurement requests, we
simulate random arrivals of on-demand jobs and schedule
them over the offline EDF-CE schedule. The offline spec-
ified task set consists of four periodic tasks as before, and
their execution times and periods are randomly generated
from [1 minute, 10 minutes] and [20 minutes, 200 minutes],
respectively. The execution times and inter arrival times of



Figure 11. Average response time of on-
demand jobs

Figure 12. Online schedule overhead for on-
demand jobs

on-demand jobs are also randomly generated from [1 minute,
10 minutes] and [20 minutes, 200 minutes], respectively. The
performance metric is the average response time, i.e., time
lag between the arrival time and the completion time, for
1000 on-demand jobs. We compare our recursive push al-
gorithm with a background approach that schedules an on-
demand job in the earliest gap present in the offline EDF-
CE schedule within which the on-demand job can execute to
completion. Figure 11 shows that our recursive push algo-
rithm can significantly improve the responsiveness for on-
demand measurement requests. Note that the average re-
sponse time in both the background and recursive push cases
increases as the conflict factor increases. This is because a
higher conflict dependency among tasks reduces the concur-
rent execution of jobs and thus reduces the gaps available to
schedule the on-demand jobs.

To estimate the overhead of online scheduling, we mea-
sure the algorithm running time for each on-demand job on
2.4 GHz Pentium 4 Linux PC. Figure 12 shows the average
times as increasing the number of periodic tasks, i.e., the
problem size, while fixing the conflict factor as 0.8. Even for
a large number of periodic tasks with a high conflict factor,

Figure 13. Structure of Measurements
Scheduling Framework

our recursive push algorithm can find the slack and calcu-
late the updated schedule within tens of milliseconds. This is
a negligible delay comparing with typical measurement task
execution times in the order of minutes.

4.2 Performance Evaluation Results on an Internet
Testbed

We have actually implemented and deployed our schedul-
ing algorithms in a NMI that is being used to monitor net-
work paths on the Internet 2 Abilene network backbone. The
scheduling framework consists of a “Scripting Language In-
terface” and a central scheduler as shown in Figure 13. The
scripting language interface provides a generic and auto-
mated way to input measurement specifications such as mea-
surement server topology, periodic measurement tasks, and
MLAs. These specifications are interpreted by the central
scheduler to construct schedule timetables for the measure-
ment servers. The constructed schedule timetables are trans-
ferred to the corresponding servers to initiate the measure-
ment jobs at the planned times.

Our Internet testbed has five sites each of which are
equipped with two measurement servers as shown in Fig-
ure 14(a). To collect the actual measurement data, we run
five periodic measurement tasks as shown Figure 14(b). The
resulting task conflict graph is shown in Figure 14(c).



Figure 14. Internet Testbed Setup

Figure 15. Iperf Loss measurements between
Site-2 and Site-3

Figure 16. Pathload Bandwidth measurements
between Site-3 and Site-5

Figure 17. H.323 Beacon MOS measurements
between Site-3 and Site-4

Figure 15 shows Iperf packet loss reports2 measured be-
tween Site-2 and Site-3 by task τ1. The proposed EDF-CE
guarantees zero conflict with other tasks and the reported
data correctly represents the inherent fluctuation of actual
packet loss status between Site-2 and Site-3. In contrast,
the no-orchestration method results in 53.33% conflicts of
τ1 with other tasks. As a result, the measurement reports ab-
normally fluctuate, which does not necessarily mean that the
actual network status has such fluctuation.

Figure 16 shows the Pathload Bandwidth reports3 mea-
sured between Site-3 and Site-5 by τ4. Figure 17 shows the
H.323 Beacon MOS reports4 measured between Site-3 and
Site-4 by τ2. From these two figures, we can make the sim-
ilar observation as in Figure 15 justifying the importance of
measurement orchestration for the correct estimation of net-
work status.

5 Related Work

Recent studies [6, 7] have developed Network Measure-
ment Infrastructures using active measurement techniques
to monitor and estimate the network status. They however
have not paid much attention to the measurement conflict
problem. They commonly create cron jobs that initiate ac-
tive measurements without any considerations for avoiding
measurement conflicts. Such approaches result in erroneous
measurement results that do not accurately reflect the actual

2Loss measurements reported by Iperf correspond to the number of pack-
ets lost while transferring UDP packets similar to a typical UDP application
flow along a path between two measurement sites. Iperf uses packet flooding
methodology [3].

3Bandwidth measurements reported by Pathload correspond to the
“available bandwidth” for a path, without affecting the rest of the traffic
along the path between two measurement sites. Pathload uses Self-Loading
Periodic Streams (SLOPS) methodology [5].

4MOS measurements reported by the H.323 Beacon are generated by
VoIP traffic emulation and are useful in evaluating network capability to
support Voice and Video over IP (VVoIP) applications. The MOS values
are reported on a quality scale of 1 to 5; 1-3 range being poor, 3-4 range
being acceptable and 4-5 range being good [1]. MOS values close to 4.41
are desirable for high-quality VVoIP.



network conditions. The NMIs in [8, 9] either use round-
robin or resource broker methods for avoiding the measure-
ment conflicts. However, they do not perform well in terms
of schedulability and thus they fail to schedule many mea-
surement tasks initiated between many measurement servers.

The Network Weather Service (NWS) [11] uses time-
series models to forecast the network performance. These
models require a consistent periodicity of active measure-
ments in addition to accurate network status information.
To meet these requirements, a token-passing mechanism was
proposed [10] that allows only a single server in possession
of a token to initiate measurements to all the other measure-
ment servers in the NMI . However, it cannot leverage possi-
ble concurrent execution of multiple measurement jobs and
hence limits the schedulability.

Our scheduling framework is similar to the joint-
scheduling algorithms in [14, 15], in the sense that they con-
struct an offline schedule for static tasks and steal unused
slots to schedule aperiodic jobs. However, their scheduling
problem is inherently a computation job scheduling problem
on processors and thus they cannot address the nature of mea-
surement scheduling problem such as concurrent execution
of multiple jobs on the same server and task conflict among
multiple servers across the communication channels.

6 Conclusion and Future Work

In this paper, we identify the measurement conflict prob-
lem, which results in misleading measurements of network
status when multiple conflicting measurement tools are ex-
ecuting at the same time on the same server or path. From
the observation, we formulate the measurement scheduling
problem as a real-time scheduling problem.

For the optimal schedulability of periodic measurement
tasks, we use the EDF principle, which has been proven to be
optimal in single processor preemptive scheduling and per-
form well in general settings. Our significant enhancement
is to leverage concurrent execution, which clearly differen-
tiates the measurement scheduling problem from the classi-
cal real-time scheduling problems. Our enhanced EDF al-
gorithm called EDF-CE allows concurrent execution of mul-
tiple measurement jobs not only on the isolated servers and
paths but also on the same server and path, as long as they
do not conflict—no misleading reports. This significantly
improves the schedulability and thus allows us to run mea-
surements more frequently or save much time for on-demand
requests.

We also propose an online scheduling algorithm to serve
on-demand measurement requests as early as possible. The
online algorithm can steal the maximum slack without violat-
ing any periodic deadlines and thus can almost immediately
schedule the on-demand requests. Therefore, the response
times of on-demand requests can be significantly reduced.

All the proposed scheduling algorithms have actually
been implemented and deployed on Internet 2 Abilene net-
work. The actual experimental results demonstrate the perti-

nence and trustworthiness of our proposed scheduling algo-
rithms.

In the future, we plan to implement our measurement
scheduling framework in a decentralized way by using a dis-
tributed synchronization method. We believe that having a
decentralized framework can improve the flexibility in de-
ploying our algorithms on wider-basis in multidomain “mea-
surement federations” on Internet backbones.
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