IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. X, XXX 200X

Orchestration of Network-wide Active
Measurements for Supporting Distributed
Computing Applications

Prasad CalyamStudent Member, IEEEChang-Gun LeeMember, IEEE Eylem Ekici, Member, IEEE,
Mark Haffner, Student Member, IEEEBNnd Nathan HowesStudent Member, IEEE

Abstract—Recent computing applications such as videocon-
ferencing and Grid computing run their tasks on distributed
computing resources connected through networks. For such
applications, knowledge of the network status such as delay,
jitter, and available bandwidth can help them select proper
network resources to meet the Quality of Service (QoS) re-
quirements. Also, the applications can dynamically change the
resource selection if the current selection is found to experi-
ence poor performance. For such purposes, Internet Service
Providers (ISPs) have started to instrument their networks with
Network Measurement Infrastructures (NMIs) that run active
measurement tasks periodically and/or on-demand. However,
one problem that most network engineers have overlooked is
the measurement conflict problemwhich happens when multiple
active measurement tasks inject probing packets to the same
network segment at the same time, resulting in misleading reports
of network performance due to their combined effects. This pape
proposes enhanced EDF (Earliest Deadline First) algorithms
that allow “Concurrent Executions” to orchestrate offline/online
measurement jobs in a conflict-free manner. The simulation study
shows that our measurement scheduling mechanism can improve
the schedulable utilization of offine measurement tasks up to
300% and the response time of on-demand jobs up to 50%.
Further, we implement and deploy our scheduling mechanism
in a real working NMI for monitoring the Internet2 Abilene
network. As a case study, we show the utility of our algorithms
in the widely-used Network Weather Service (NWS).

Index Terms— Active network probes, Measurement conflict,
Real-time scheduling, Concurrent execution, Network Weather
Service.

|. INTRODUCTION

Therefore, for the success of distributed computing applic
tions, it is critical to collect Internet status measuretaém an ac-
curate and timely manner. Fortunately, Internet Servicigers
(ISPs) have started to instrument their networks with Netwo
Measurement Infrastructures (NMIs) [3], [4], [5] for camtious
monitoring and estimation of network-wide status. For ttiey
use active measurement tools such as Ping, Traceroute3H.32
Beacon [2], Iperf [6], Pathchar [7] and Pathload [8] that\eaty
inject probing packets to collect useful measurements as@nd-
to-end delay, jitter, loss, bandwidth, etc. The NMls peicatly
run these measurement tools on the measurement servers at
strategic points to collect the periodic sampling of netwstatus,
which is essential for network status prediction [9]. Thésoaan
run the measurement tools on-demand for applications ¢laine
a more detailed look about certain network paths.

When executing the periodic and on-demand measurement
jobs, an important problem we recently observed is thea-
surement conflict problemwhich has been overlooked by most
network engineers. Since active measurement tools consame
negligible amount of network resources for injecting prapi
packets, if two or more measurement jobs run concurrently ov
the same path, they can interfere with each other resulting i
misleading reports of network status. Our experiment iruFedlL
illustrates the measurement conflict problem. In the expent,
we connect two measurement servers by a LAN Testbed with
1500 Kbps bandwidth and run one H.323 videoconferencing
session at 768 Kbps dialing speed as the background traffic.
Thus, the remaining bandwidth should be approximately 732
Kbps. Given that streaming media and videoconferencirf§jcra

Recent computing applications such as videoconferenaing ds essentially UDP traffic, Iperf in UDP mode is popularly dse

Grid computing utilize distributed computing resourcesrgected
through the Internet. Thus, their user-level performaries on
the status of the Internet paths they udéwe can measure and
predict the status, we can select the computing resourckthain
connecting Internet paths that can soft guarantee thelessr-
QosS.

A preliminary version of this paper has appeared in the pidiogs of
IEEE Real-Time Systems Symposium (RTSS), 2005 [1].

Manuscript received July 12, 2006; revised February 027200

P. Calyam is with OARnet and The Ohio State University, Colusb
OH 43210, USA, Email: pcalyam@oar.net; C. -G. Lee, the cooeding
author, is with the Seoul National University, Seoul, 15127Korea, Email:
cglee@snu.ac.kr; E. Ekici, M. Haffner and N. Howes are withe TOhio
State University, Columbus, OH 43210, USA, Email: ekici@ese.edu,
{haffner.12,howes.I&@osu.edu

1There are several ways to map the network measurements to thievele
quality. The E-Model [2], for example, is a standardized cotafional model
by ITU-T to estimate the user-level VoIP quality from the measunetwork
status.

to measure the available bandwidth. Thus, we make the two
servers occasionally initiate Iperf jobs to monitor the ikade
bandwidth. When we make two Iperf jobs run back-to-back
with mutual exclusion (shown in the left-half of Figure 1hetr
measurements are in agreement with our expectation. Howeve
when we intentionally make two Iperf execution durationsrtap
(shown in the right-half of Figure 1), it causes misreprémton

of the remaining bandwidth, merely due to conflicts of tworfpe
jobs. This implies that if measurement tools are initiatéthewt
being orchestrated with each other, their execution cumatiay
overlap resulting in misleading measurement reports.

This observation motivates scheduling problem of measure-
ment jobs for orchestrating them to prevent conflicts whilg s
providing the periodicity of periodic measurement jobs ajuitk
response to the on-demand measurement jobs. nature of the
problem is similar to real-time scheduling even though theet
granularity of periods is much coarser (order of minuteahtthat

IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. X, XXX 200X 2

1 I ; Kansas
--=-= Back-to-back Iperf Measurements - eattle city
—— Concurrent Iperf Measurements | Sunnvvalf .

l e

With Mutual Exclusion of measurements - Without Mutual Exclusion of measurements

New York

e
N
a

2
o
S

Los Angeles

s 0C192 Link
== Measured Link

m Core Router

=== Measurement Server

Bandwidth (Mbps)
°
9
b

|
|
|
I @ GigaPoP
|
|
|

251 2:53 2:55 2:57 2:59 %01 303 305 307 3:09 Internet2 Abilene Network
Time in hh:mm Measurement Topology

Fig. 1. Iperf test results with and without mutual exclusidmmeasurements Fig. 2. Measurement Topology constructed for a set of netwaitks

. . . conflicts. As a result, they can give erroneous measurerasults
of the classical real-time systems. The measurement slihgdu

roblem, however, has a fundamental difference from thesatal and fail to reflect the actual network status.
problem, Nowever, u : . To address the measurement scheduling problem, [3] and [11]
real-time scheduling problems: More than one measurenoént

. bise a simple round-robin approach where measurement server
can be scheduled at the same time on the same server and e 3R turns such that only one tool executes at a time. In NMls

network path as long as they can produce the correct measnotem . . .
. . A such as [5], a resource broker scheduling scheme is usedg Usi
data. We call this a “concurrent execution” of multiple joleigh [5] 9

N o this resource broker scheme, multiple measurement rexjaest
no conflict”. : ! :
) . . . queued for scheduling and executed on a first-come firseserv
meT;slirgripe?\rt j%rtc))sf)cl)es\(/a:ra(;?rrl]gI(t:gr?:aﬁtciaeedZlcl:ag dill?r?g;:llt:::s f%asis on a measurement.server. Thg network. weather service
? . . (NWS) uses a token-passing mechanism [13] in an attempt to
and 'Fhe concurrent executlon.. More spec:|f|ca-1lly, the cbatidns meet the measurement periodicity requirements while oioigi
of this paper can be summarized as follows: accurate network status information. This mechanism allonly
« We propose an offline scheduling algorithm based on thesingle server in possession of a token to initiate measrem
EDF principle [10] but allowing concurrent execution ifThe round-robin, resource broker, and token-passing andasi
possible, which can significantly improve the schedulbili i principle, i.e., they allow only one instance of measugatn
of a given set of periodic measurement tasks, to be executed at a time. Therefore, they cannot leverage the
« We propose an online mechanism that can steal left-ovggncurrent execution of multiple measurement jobs and éenc
times from the offline schedule to serve on-demand megmit the schedulability.
surement requests as early as possible without violatieg th |y 5ddition to our contributions from the scheduling perspe
periodicity requirements of existing measurement tasks, tjve, another significant contribution is our systematicestuling
e We implement an actual NMI scheduling frameworkramework that automates the whole process from the mea-
equipped with the proposed scheduling mechanisms to megrement specification to the runtime measurement dataceoll
sure an operational network, Internet2 Abilene network. tjon, None of the previous schemes provide such a systematic
The rest of this paper is organized as follows: The nextsectiframework. As a result, existing schemes require considera
summarizes the related work. Section Il formally defines thtime and effort to specify distinct sampling requirementsg or
measurement task scheduling problem. Section IV presants delete measurement tasks, and generate measurementleshedu
offline and online measurement scheduling algorithms.i@e& accordingly. Furthermore, it is hard to implement the poton-
presents our case study for applying the proposed schegdultracts among multiple ISPs for measurements across ISRsord
algorithms to the Network Weather Service (NWS) and its ud#ith our systematic measurement framework, however, tliesen
for distributed computing. In Section VI, our experimentedults process can be automated and the manual effort minimized.
from both simulations and actual implementation are presken

Finally, Section VII concludes the paper. [1l. PROBLEM DESCRIPTION ANDTERMINOLOGY
An ISP deploys measurement servers at strategic points to
Il. RELATED WORK continuously estimate the network-wide status. The measent

Many of the earliest Network Measurement Infrastructureervers measure the network paths to other servers. They are
(NMiIs) used simplePing and Traceroutemeasurements without attached to core routers as shown in the case of the Denver cor
paying attention to possible overlaps of their executiorations. router in Figure 2. The paths to be measured are specified by a
This is acceptable since they are neither CPU nor chanrat-intmeasurement topology, which can be formally represented by
sive, allowing overlaps without causing measurement adefli graphG = (N, E), where N is the set of measurement servers
However, many of today’s NMIs such as NLANR AMP [3],andF is the set of edges between a pair of servers. Figure 2 shows
Internet2 E2EpPIPES [5], NWS [9], Surveyor [11] and RIPE [12]an example measurement topology that consists of measatreme
employ toolkits that have several CPU and/or channel imens serversN = {51,52,53,54,55} and edges amon§, Sz, Ss, S4,
measurement tools, which may cause measurement conflizt prand Ss.
lems. Nevertheless, these NMIs use a simple scheme thaeésrea On top of the measurement topology, a set of periodic mea-
cron jobs that start active measurements at the planned periogdicement tasks is specified. Each periodic measurementriask
time points without paying attention to avoiding measuremeis specified to measure a path from a source sesvey to a

IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. X, XXX 200X 3

destination servedst; using an active measurement taobl;.
The measurement should be periodically repeated with gerio
The j-th instance (ofob) of 7; is denoted byr;;. The time when
the j-th job 7;; is released is called thelease timeand simply
given by (5 — 1)p;. The execution time of a single measurement

71 = (51, S2, Pathchar, 60, 10)
7o = (Sa2, S5, Iperf, 40, 10)
73 = (S4, S3, H.323Beacon, 20, 5)
74 = (S4, S5, Ping, 30, 5)

instance is denoted by. Then, a periodic measurement task can (&) measurement topology (b) task set
be represented using the similar notion of a real-time péio
task as follows: SR EE— Tz = lpirf H.szslaeaco,, Pa;hch i Op.n n .
e H.323Beacdn 1 1 1 0
7; = (sreq, dst;, tool;, pi,e;). Ty 3 Pa':::f E ; ; g s 3
The set of all offline specified periodic measurement tasks (fgoe"a! task conflict graph (d) tool conflict matrix (¢) task conflict grapl

denoted by
Fig. 3. Task conflict graph

F={r,m2, - ,™}

We also define &yperperiodfor task sefl” as the least common
multiple of all the task periods in the set. Thus, each hypeod since it significantly degrades the regular user traffic querf
repeats the same pattern of release times. Therefore, the sanance. Thus, we need a regulation on the measurement traffic.
schedule constructed for a single hyperperiod can be ugedte Since an end-to-end measurement could involve analyzitg da
edly. along network paths of multiple ISPs, we envision “measam®m

In addition to such offline specified measurement tasksethdederations” in which many ISPs participate in inter-domai
can be on-demand measurement requests to quickly collset ameasurements based on MLAs for reaping the mutual benefits
tomized measurements. For example, an Internet network engf performing end-to-end path measurements. MLAs can §peci
neer might want to trace-back the source of a DoS attack that only a certain percentage (1% - 5%) or only a certain
soon as possible by running on-demand measurement jobs awember of bits per second (1 Mbps - 2 Mbps) of the network
suspicious paths [14]. Such an on-demand measurementstegbandwidth in ISP backbones could be used for measurement
is denoted by traffic, which can ensure that the actual application traffioot

Ji = (sreg, dsty, tooly, er,). seriously affected by measurement tré&tfid/e use the notatiot

. . . denote the MLA specification in an NMI. In the measurement-
For such an on-demand request, a quick response is desir clg

Th ‘ i i hich el scheduling problem, the sum of the bandwidth usage by
us, as a perlormance metric, we use fbEponse imewhic oncurrent measurement jobs over the same channel should be
is defined as the time difference between the time when t

o . s thary at all times.
measurement job is requested and the time when the request From the above inputs and constraints, the measuremegit-lev
finally served. ’

Our problem is to schedule the aforementioned offline ans&hedullng problem can be formally described as follows:

- . . Problem: Given measurement topologg = (N,E) and
online measurement jobs on a given measurement topolog

. . tine specified measurement task set {7, m, -, 7}, find
Unlike the OS-level schedule that determmgs when the Gt the schedule of measurement jobs such that all deadlinesl(eq
and packets can be executed and transmitted, the measure

level scheduling broblem is to determine the start and Stopst rq‘cairberiods) can be met while preventing conflicts and adiyen
evel scneduling probiem 1S to determing the start and Stopst v,y o constrainty). For an on-demand measurement request
of a measurement tool whose execution can last a few minate

o , schedule it as early as possible without violating deadliof
have a statistically stable measure. For such measurdeetht- yasp g

) . o offline tasks inl", conflict constraint, and MLA constraint.
scheduling, an important constraint is a measurement confli

problem. Overlapping the execution intervals of two measent
jobs may or may not be problematic, depending on the measure- V- MEASUREMENT SCHEDULING ALGORITHMS
ment tools used. If a measurement tool is neither CPU intensi In this section, we first present an offline scheduling algo-
nor channel intensive like Ping, it does not interfere withes rithm to construct a schedule table for a given set of peciodi
tools. Thus, overlapping its execution interval with othen the measurement task§ = {7y, 72,---,7}. Then, we present an
same server and/or path can still give us correct measutemenline algorithm to schedule an on-demand measuremengsequ
reports. Such an overlap is called a “concurrent executwitti .7, without missing deadlines of periodic tasks. We first assume
no conflict, which is desirable to improve the schedulabilit existence of a central regulator that governs the globatcidle
On the other hand, other active measurement tools such aael later relax this assumption.
Iperf [6] and Pathchar [7] are CPU intensive for sophisédat
calculations and/or channel intensive due to a large amofint . . .
probing packets. Thus, overlapping their execution irgsrover A. Offline Scheduling Algorithm
the same measurement server or the same channel can cauleour measurement scheduling framework, a central regulat
serious interference and lead to misleading reports of ¢heark collects all specifications of periodic measurement taskd a
status. We define measurement confliets an execution overlap builds a schedule table that determines times when measatem
of multiple measurement jobs that results in misleadingrsp jobs can start and stop at each server. To build such a table,
In addition to the measurement conflict issue, one additiona
2Since most active measurement tools have options to specikepsizes

nstraint of the m rement-level sch ling probl ; . X)
constraint of the measurement-level scheduling problerthes and bandwidth usage of a measurement test, simple calculagonbe used

Measurement Level Agreeme(rhtl LA). Utilizing e?(ceSSive Nt to determine how much of a network’s bandwidth will be used byvargset
work resources just for active measurements is not ap@i@priof active measurements, over a certain period of time.

IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. X, XXX 200X 4

0 10 20 30 40 50 60 70 80 90 100 110 1

: : : : : : ‘ ‘ ‘ ‘ ‘ ‘ ! scheduling algorithm. Figure 5 shows such a schedule for the
]T‘ = T same problem. It can completely prevent conflicts. Howeiter,
' conflict does not allow concurrent execution of multiple jobs evethéy

r L721"] T) do not conflict, which degrades the schedulability.
conflict gﬂconﬂim #ljconﬂict We aim to find a schedule in between these two extremes
T3 [T31 ?T—sz\ 733 m T35 TE\

such that conflicts are completely prevented while maxingjzi
the concurrent execution whenever possible. For this, wpqse

the EDF-CE (i.e., EDF with Concurrent Execution) algorittimat
schedules measurement jobs in the EDF order while allowing
concurrent execution if jobs do not conflict. The algorithen i
formally described in the following:

90 100 110 1
L 1 1 1 1 1 1 1 1 1 1 1 |

74 [T41 T42| T43| T44)

o
.
1S
~
S
w
8
IS
3
a
3
@
3
<
=
©
3

EDF-CE: for the given task conflict graph, find the measurement
schedule during a hyperperiod

- L
1

!
T2 T21 w T22 T ’T‘ T
Input: task setl’ and task conflict graph
K = g = iz I8 iz ! Output: start timest;; and finish timeft;; for each jobr;; in a
s W [7a1] T = T = T i T hyperperiod

begin procedure
1. Initialize rt_lzst with the ordered list of all release times in a
Fig. 5. Orchestration based on single processor non-préenfidF schedule hyperperiod
2. Initialize ft_list = {} /* ordered list of finish times*/
3. Initialize pending_job_queue = {}
the first step is to make task conflict graphby combining the 4. do
measurement topolog¢ and the task seff. Figure 3 shows an 5. time = get the next scheduling time point fromt_list
example problem. For the given measurement topology and #ed ft_list
task set in Figures 3(a) and (b), we examine each pair of tatks add all newly released jobs @tne to pending_job_queue
; and; to see if they share the same source server, destinatiBrEDF order
server or part of the paths between source and destinativerse /- for each jobr;; in pending_job_queue in EDF order
If so, the two tasks may “potentially” conflict if scheduledd: if 7;; does not conflict with any of already scheduled
concurrently. In Figures 3(a) and (b}, and , shareS, and 10bS attime and _ _
thus we add a potential dependency edge between them in the scheduling;; at time does not violate MLA
potential task conflict graph as in Figure 3(e). and 3 share constraint)
the path and thus a dependency edge is added. On the other ; . .
hand,r; does not share any network resource withand thus It fti; is later than the deadline of;
) . 12. return error /* infeasible task set */
no edge is added. Even if two tasks share network resoutms, t1 end if
may not actually conflict depeno_ll_ng on thg ac_tlve measurém remover;; from pending_job_queue
tools used. Based on our empirical studies in [15], we cou _ addft,; to ft_list in order
determine which tools conflict if they run concurrently. Tiesult 4 else Y
is summarized by the tool confllgt matrlx in Figure 3(d). Fog7. do nothing /*r;; will be considered again at the
example, Iperf and Pathchar conflict if they run concurseoth oyt scheduling time point in the outer loop */
the same server since both intensively use server and dhany end if
resources for active measurement. On the other hand, P&tg jug. end for
injects small probing packets and hence does not conflidt Wib0. until time == hyperperiod
any other tools. Considering the tool conflict matrix, thégmtial end procedure
task conflict graph in Figure 3(c) can be converted to the final] o]
task conflict graph of Figure 3(e). The edge between two tasks "€ EDF-CE algorithm maintains the ordered list of release
the task conflict graph means that they should be schedulad iHMeS 7¢-list and the ordered list of finish timegtlist. Line

. : . . 1 initializes rt_list with all release times in a hyperperiod. In
mutually exclusive manner, otherwise a conflict happensltiag . .
in misleading reports. Figure 6, the release times are 0, 20, 30, 40, 60, 80, 90, 1a@D, a

. ! . 120. Line 2 initializesft_list as empty since no job is scheduled
Now, we can consider only the final task conflict graph t9et. Note that the only time points when we need to make a

compute the offline schedule. One obvious solution is 10t St§fcheqyling decision are either when a new job is released or a
a measurement job at the source server at its release titheutit \yrent executing job is finished. Thus, we call times-iniist

considering measurement conflict and MLA constraints. féigli gng ft_list “scheduling time points”. In addition, the algorithm
shows such a schedule for the problem given in Figure 3. ffaintains apending_job_queue that holds all jobs released but
the figure, the upward arrows indicate the release times @f thot scheduled, in the EDF order. Line 3 initializes it as gmphe
periodic measurement tasks. The schedule, however, causefo-until loop from Line 4 to Line 20 progresses the virtual time
number of conflicts that result in misleading report of theuat variabletime upto a hyperperiod while determining the schedule
network performance. Another approach is to run only a singht all scheduling time points. Line 5 movegne to the next
measurement job at any time instant using a non-preempb¥fe Escheduling time point. Then, Line 6 adds all newly releasdss j

sty; = time and ft;; = time + e;

IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. X, XXX 200X 5
0 R T S T A G o S S S N N S o T T o 1 S
R R N S = N T B =R = R T4~ & R

7 L7 T12

3
ﬂ
&

L » L L L

(a) EDF=CE schedule W
fn-demand request
4 T1 T2
Jik
g, [[z Tk J
T4 3
s. T21 22 23
2 modified task conflict graph
S3
e
12
Sy 731 739 743 733 T3 T35) Taq T30 34

schedule replacement

Tr
[T43]

(b) Schedule table for each server

) Fig. 7. Recursive pushing for maximum slack calculation
Fig. 6. EDF-CE Schedule

to the pending_job_queue. The for loop from Line 7 to Line J,. The basic idea of recursive push can be best illustrated

19 examines the pending jobs in the EDF order and determir#s Figure 7 that shows the same EDF-CE schedule as above.

whether they can start atme without causing any conflict and Suppose that an on-demand requdgt = (So, 53, Iperf, 10)

without violating MLA v (see Lines 8 and 9). If so, the jobarrives at time 50. We assume that conflicts with 1, 7, and

7;;'s start timest,; is determined asime and its finish time 73 as shown by the modified task graph. The central regulator

fti; is determined agime + e; in Line 10. If the finish time cannot allowJ,, to start at its arrival time 50 since it conflicts

fti; is later than the deadline of joh; in Line 11, we cannot with 733. Thus, the central regulator calculates the maximum

construct a feasible schedule meeting all deadlines andeheslack from starting at 55. For this, the central regulatoitsca

return error in Line 12. If we can meet the deadlinergf we can push(r12) and push(rs4) to determine how muchs and 734

continue. In Line 147;; is removed from th@ending_job_queue. ~can be pushed to make the maximum slack fpr The push

Also, its finish time ft;; is added toft_list so that ft;; can operation is recursive. To determine the maximposh of 712,

be considered as a new scheduling time point in the odder we first have to know the maximumpush of the dependent

until loop. If ;; cannot be scheduled atme (Line 16), it is job 723. Thus, push(ri2) recursively callspush(rz3) and in

kept in thepending_job_queue and can be considered again aturn push(rzs) calls push(rss). On the other handyss does

the next scheduling time point by the outer loop. Note that tinot conflict with any other offline scheduled jobs while being

algorithm tries to concurrently start as many jobs as ptssib pushed up to its deadlinéss = 120. Such a job with which

the EDF order atime as long as they neither conflict nor violatethe recursion can terminate is calledteminal joh Similarly,

the MLA. Figure 6(a) shows such EDF-CE schedule for the samg; is also a terminal job. For a terminal joh;, the push

problem of Figure 3. At time 0 of the EDF-CE schedule, noté tharocedure can determine its new pushed finish time_ft;;

T11, T31, andry; are executed concurrently but naf, which is and new pushed start time:w_st;; = new_ft;; —e; without any

maximizing the concurrent execution guaranteeing no-wnfl further recursive calls. Theush operation is formally defined
Once we find the EDF-CE schedule, we can convert it to ties follows:

measurement schedule table of each server consideringtinees

server of each job. Figure 6(b) shows the schedule tabldstbia

five servers. Such constructed schedule tables are trestsfer push: return the new start time of input jobs after maximum

corresponding servers so that they can start and stop theqda push

measurement jobs.

Input: 7,
)) Output: new start time after maximum pustew_st;;
B. Online Scheduling of On-Demand Measurement Requests begin procedure
At the run time, while each server executes periodic meé:- if ;; has no conflicting jobs scheduled updg /* terminal
surement tasks according to the pre-computed schedule, tabljob */

network engineer can request an on-demand measuresent 2. slide 7;; from st;; to d;; — e; until MLA violation is

For now, we assume that such a request is received by thelcentbserved aty;r 4 (tarra < dij).

regulator. 3. if taprr 4 is found, the new finish timeew_ft;; = tarpa.
Upon the arrival of an on-demand requesl, = otherwisenew_ft;; = d;;.

(sreg, dsty, tooly, ex), our goal is to serve it as early as4. new start timenew_st;; = new_ft;; — e;.

possible without missing any deadlines of periodic meanerg 5. else/* not a terminal job */

tasks. For this, we propose mecursive pushalgorithm that 6. new finish timenew_ft;; = d;;.

recursively pushes offline scheduled periodic jobs withirit 7. for each conflicting task; ;; up tod;;

deadlines. This push can create a left-over time calleslaak 8. new_ft;; = min(new_ft;;, push(ry ;.)).

as early as possible and this slack time can be used to sehedul end for

IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. X, XXX 200X 6

10. slider;; from st;; to new_ft;; — e; until MLA violation @ @

is observed atp;pa (tarpa < new,ftij). @@ @ @
11. if tarr 4 is found, the new finish timeew_ft;; = tarpa.

otherwise keeprew_ft;;.

12. new start timewew_st;; = new_ft;; — e;. @ @ @ @

13. end if (a) Measurement topology (b) Minimal spanning tree (c) Initial lock placeme
14. returnnew_st;;.
end procedure Fig. 8. Minimal spanning tree for the measurement server tgyolo

This algorithm returns the new start timew_st;; after max-
imally pushingr;;. If 7;; is a terminal job, its new finished time @\

L eadian - o, o BNy ®
can be pushed up to its deadlidg if we could ignore the MLA @b/. b/. @
—(S) (59—
A /4

constraint. In order to consider the MLA constraint, in LiBge

we slider;;'s execution interval up ta;; to find a earliest time) g@
point 5,1, 4 When the MLA constraint can be violated, if any. ‘? I y ¢
If such time pointty; 14 is found, tyrr 4 is the latest possible L ta) o crialsection] time
pushed finish time of;; without violating the MLA constraint. LOCK_&L%\%MAPP
Thus, new_ft;; is set toty; 4 in Line 3. Otherwise, the new % —— e
finish time can be pushed up th;, that is,new_ft;; = d;; in 5 LoCK-REQ i
Line 3. Once the new finish time is determined, Line 4 can sympl %CK*APP /\vm.mﬂ
calculate the new start time, i.evew_st;; = new_ft;; — e;. 5 V(/ £ Shnmitinfo
If 7;; is not a terminal job, Lines 7, 8, and 9 recursively call , fufockree V%
push for all dependent jobs to figure out the minimum new start B A

time of all dependent jobs. If we ignore the MLA constraite t

minimum of the deadlind;; and the new pushed start times of alFig. 9. Distributed schedule update

dependent jobs is the latest possible new finish time_ft;; for

7i;. Lines 10 and 11 can advance the new finish timea_ft;;

considering the MLA constraint in the same way as in the teami jt preaks the consistency of the schedule and in turn creates

job case. Withnew_ft;;, Line 12 calculates the new start time asneasurement conflicts. Therefore, the issue is to serialiee

new_styj = new_ft;; — e;. Finally, Line 14 retumsiew_st;;. distributed concurrent requests such that the schedulebean
Consideringnew_st;; of all dependent jobs of/;, we can ypdated in a consistent way. For this, we propose to use Ray-

calculate the maximum slack that can be used for the on-d&manAgng's algorithm [16] developed for distributed syncheation.

requestJ,, starting from the current scheduling time pontlf This section describes how Raymond’s algorithm works with o

the maximum slack is larger than the required execution ti”&%heduling algorithms maintaining the schedule consigtém a

e, and also if executing/y, from ¢ to ¢ + e, does not violate gistributed way.

the MLA constraint, the central regulator sets timas the start For the measurement topology given in Figure 8 (a) as an

time of J;, and push dependent periodic jobs as needed. Thg;mple, we first create the minimal spanning tree as in Fig-

piece of schedule affected by (see “schedule replacement’ e g' (). This tree is used to maintain a tree-wide singlé loc

in Figure 7) is transferred to the corresponding servershad tyith minimal exchange of messages [16]. The basic idea is to

they can temporarily use the updated schedule piece instead,| o,y only the lock holder to commit the arrival of a requesaa

the original schedule, to accommodafe If the above condition ime which assures the global serialization of concurrequests.

does not hold, the central regulator examines the next stingd In the initialization phase, we place the lock at any sersay;

t@me point to recaICl_JIate th(_a maxi_mum slack and so on, until 5, in the example of Figure 8 (b), and make each server set its
finds enough slack time during which can be executed without ;.. yariable to the neighbor toward the lock holder as shown in
violating the MLA constraint. Figure 8 (c).

o))) Upon the arrival of a new request at a server, the server

C. Distributed Implementation of Scheduling Algorithms exchanges messages with others along the spanning tree, and

The aforementioned scheduling algorithms assume a cengaéntually gets the lock. Then, it commits the arrival of the
regulator that collects all offline/online measurementuesgs request by sending this commitment information to all tHecéd
and builds/updates the global schedule. A centralizedlatmu servers. All the servers that receive this commitment rum th
is popular in NMIs because it is convenient to initiate andame EDF-CE (for an add/remove request of a periodic task)
collect measurements into a central database. Howeven, aucor recursive-push (for an on-demand job) algorithm to updat
centralized mechanism could incapacitate an NMI when tieereits schedule table. This procedure can be best illustrayethé
a failure of the central regulator. Also, some applicatiogrguire example of Figure 9. Suppose that the initial lock holdesdisas
distributed measurement scheduling to gain greater flayibi shown in the left-most tree. Also, assume that an on-demaind j
to dynamically determine the locations of measurement dafa(Ss, S4, Iperf,10) arrives atSs at timet;. SinceS5 is not the
collection and subsequent analysis. To address thesesjghie lock-holder, it enqueues its I35 in the Ss’s queue and sends
section presents a mechanism to implement the above sampdusd LOCK-REQUEST message to the neighlsr pointed by its
algorithms in a decentralized way. dir variable.Ss is not the lock-holder either and thus it enqueues

In a distributed setting, measurement requests (e.g.readdie the requester’s ID55; and sends a LOCK-REQUEST message to
periodic measurement tasks and on-demand measuremeht joibs neighborSs pointed by itsdir variable. In the meantime,
arrive at their local servers, possibly concurrently. IEle@erver suppose that another request(Ss, Ss, Iper f,10) arrives atS;
concurrently updates the schedule upon the arrival of tque at timet,. SinceS; is not the lock-holder, it enqueues its 19

IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. X, XXX 200X 7

and sends a LOCK-REQUEST messagestopointed by itsdir agreed authentication and encryption methods as will lridéed

variable. WhenS;’s LOCK-REQUEST reaches the lock-holderater. Thus, every measurement server in the NMI federat&on

Sa, Sa's queue is empty and it is not updating the schedule (nbave the federation-wide view of the server topology ands thu

in the critical section), and thus it can immediately yigllock can determine the schedule of measurement tasks even if they

to the requestefs by sending a LOCK-APPROVAL message tospan across multiple ISPs. Second, the agreed measureaféaot t

the requestesS;. It is no longer the lock-holder and set i#&ér bound, MLA constrainty), can be enforced in our scheduling

variable toS; (see the second tree). When receives the LOCK- algorithms as explained in Sections IV-A and IV-B and thus it

APPROVAL atts, it notices that the head of the queue is its ownan be complied across multiple ISPs. Third, for the autbated

ID and thus can enter the critical section to comrhis arrival. and secure access to measurement resources across 1SB.borde

Since theJy’s arrival needs to be viewed by all affected servers iall ISPs can use a pre-agreed authentication and encrytetibn

a consistent ways; adds the sufficient delayx¢ of commitment niques. For example, upon arrival of a new measurement sgque

transmission ta@s; and considerss + At as the committed arrival they can use a centralized Kerberos [18] authenticatioreserith

time of Jo. Then,S; sends the commitment informatiody(and Data Encryption Standard or triple DES. This can verify tnest

t3+At) to the all affected serversy andSs. Now, S1, So, andSs requesting domain belongs to the same NMI federation aral als

can run the same recursive-push algorithm for insertingvith prevent intruders from eavesdropping the request for tecipg

the same committed arrival time of + At. When the LOCK- the authentication mechanism and impersonation as a meshber

REQUEST message frorfs arrives atSs, So is not the lock- the NMI federation. Finally, the collected measuremenadatn

holder and itsdir is pointing S1. Thus, the LOCK-REQUEST is be shared by multiple ISPs as needed by distributed congputin

forwarded toS;. When the LOCK-REQUEST reach#s, itis the applications, using “Request/Response” schemas beirejajmd

lock-holder but it is already in the critical section to coitnk. by the Global Grid Forum [17].

Thus,S; enqueues the requester’s Hy. After that,S; leaves the ~ We envision that the growth of an NMI federation involves

critical section ats + At. At this time, S; notices that the head mostly political hurdles rather than technical ones. Sitioe

of its local queue isSe and thus sends a LOCK-APPROVAL application and ISP communities are realizing the impagan

message toS; and sets itsdir toward Ss. S and S3 in turn of NMI federation for inter-domain distributed computinge

forward the LOCK-APPROVAL and update theidtir variables believe that all the political hurdles will be overcome réigg in

according to the head of their queues until the LOCK-APPRDVAa world-wide NMI federation. Note that such efforts have rbee

reachesSs. WhenSs receives the LOCK-APPROVAL at timg, already started by the communities such as Global Grid Fporum

it notices that the head of its queue is itself and thus caareninternet2 in USA, and DANTE in Europe [17], [5].

the critical section to commit the arrival of,. The commitment

phase is the same as that.bf As a consequence, the concurrent/, Case Stupy witTH NWS (NETWORK WEATHER SERVICE)

arrivals of J; and.J, are globally serialized in the order d§ and FORDISTRIBUTED COMPUTING

J1 with the consistent commitment times @f+ At andty + At. -

Therefore, the schedule can be updated in a globally cemistA' NWS Network Prediction))

way, assuring the conflict-free scheduling property. .We now apply our measurement scheduling algorlthm§ to the
For the complete and formal description of this distributeidely-used Network Weather Service (NWS) [9] that can fitev

schedule update procedure, the readers are referred toThé] network performance forecadtsn this application, one challenge

procedure inherits the proved properties of Raymond'sritgn, IS the gap between the original measurement time requiremen

Such as m|n|ma| message exchange for assuring Senaﬁyabnof NWS and the aCtua| tempOI’a| behaViOI’ Of our SCheduling

deadlock-freedom, no-starvation, and fault-tolerance. algorithms. More specifically, NWS periodically issues siea-
ment requests expecting a periodic sampling of networlustat
D. Measurement Federation Issues across ISP Borders However, the scheduler cannot serve the requests exactheat

Collecting measurement data within a single ISP domain @¢sired times due to resource conflicts with other measureme
not sufficient for distributed computing applications besmthey requests. As such, any scheduler that tries to avoid caflict
often span network paths across multiple ISP domains. ABgVitably creates a jitter in the inter-sampling times etwork
example, application service providers such as Vonage arly Status. This section presents a simple method for compegsat
multiple ISPs for delivering word-wide voice over IP (Volghd the inter-sampling jitter.
videoconferencing services. To serve their customersimpite ~ NWS relies on continuous and periodic sampling Rure
service level agreements (SLAs)’ ISPs need to Support_intgﬁriOdiC Sampllng[PPS) of network status. It uses the periOdica”y
domain measurements that could produce end-to-end Interf@mpled network status data to maintain the history of netwo
measurements. For facilitating such inter-domain measengs, Performance, which in turn is used to generate on-going gnd d
“NMI federations” [17], [5] have emerged where multiple KSP namic network performance forecasts. The forecast tim&ovin
agree upon a common measurement policy to cooperate with elicthe same as the sampling period.
other. However, it is not always possible for the measurement

This section discusses the inter-domain NMI federationgss Scheduling algorithm to provide pure-periodic networkusialata,
and explains how our scheduling framework can be incorpdratespecially when multiple measurement tasks are runnings Th
into the federation. For building an NMI federation, all thecan be explained by Figure 10 that shows an example conflict-
participating ISPs should agree on the following: (1) shgueach free schedule of two periodic measurement tasks that have a
other's measurement server topology, (2) bounding the amafu conflict relation. We can note that the task is scheduled
measurement traffic (i.e., the MLA constraif), (3) authenticated pure-periodically with constant inter-sampling times. wéwer,
and secure access to measurement resources, and (4) shar
collected measurement data. erformance. Due to its ability of forecasting network parfance, NWS has

First, the measurement server .t0p0|09y of an |SP can .be g@én adopted by a number of networked job schedulers suchpisAp19],
curely revealed only to other ISPs in the same federatiamgusie Legion [20], Globus/Nexus [21].

i
é’]I\RNS uses periodically measured network status and foredestsetwork

IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. X, XXX 200X 8

0 10 20 30 40 50 60 70 80 90 100 110 1

: ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ' B. Use of NWS for Distributed Computing

ol TR = I T ! Due it its ability to forecast the network status, NWS can
be used for a number of distributed computing applicatidred t

2 ™21 22 723 T rely on networked computational resources. In this section
sketch the scenarios where the NWS based on our conflict-

Fig. 10. Jitter of inter-sampling time points of network sgatu free measurements can help two typical examples of disétbu

computing, i.e., Grid computing and videoconferencing.

In Grid computing, users often transfer computational jobs
involving large data sets (sometimes even on the scale af ter
bytes) to remote computing sites [22]. If proper networkhpat
are not selected, then jobs that traverse problematic athis
hold up the speedy completion of other queued jobs thatrsave
problem-free paths and thus significantly degrade the Hvera
efficiency of Grid computing. This problem can be avoided
by using the NWS. It can accurately monitor and predict the
network status by using the conflict-free (and so no-mistend

(i=2)-p @-1-p ip measurement data. The job scheduler of Grid computing can us
Time such network status data to select the computing sites anare
paths in a way that ensures the optimal efficiency of the divera
Fig. 11. APS transformation to TPS computing. In addition, the ability of network status piitin
can allow the job scheduler to dynamically change the né¢wor
path selections before severe performance degradatiqggehap
In videoconferencing, interactive sessions involvingeéhor

X APS
O TPS

Measured value

(ti-1,9i-1)

the inter-sampling times of task vary for every instance. To - X ; e
avoid conflict of multiple concurrent tasks, the actual sthiag MOre participants are established using call-admissiatrotters
time points are inevitably deviated from the periodic reesime that manage Multi-point Control Units (MCUs). MCUs combine
points by any conflict-free scheduling algorithm. Our EDE-c the admitted voice and video streams from participants and

also produces such inter-sampling time jitter since it sigieed to 9€Nerate a single conference stream that is multicast tthall
guarantee the periodic deadlines and not pure periodicuéirec participants. If a call admlssm.n. controller selects peotétic
of jobs. In fact, with our EDF-CE, the inter-sampling jitieftask N€WOrk paths between the participants and MCUs, the perakp
7, can vary frome; (when a job instance is scheduled just befor@u@lity of the conference stream could be seriously aftedte
its deadline and the next one is scheduled at the releas} time/MPairments such as video-frame freezing, audio drop;artd

2p; —e; (When a job instance is scheduled at the release time Zn¢gn call-disconnects. Using the NWS, such a problem can be
the next one is scheduled just before the deadline). avoided. The call admission controllers can consult the NWS

Although our EDF-CE causes iner-sampling jiter betwee, (e 0 % 1 CR EOTS, 0 (00 SO 2 CEmet
two consecutive jobs, it bounds _the ieer by meeting the-en§ws can also be used to monitor whether the current selection
of_—pen_od de_adllnes. _Therefore, it can still be used for NW ill experience problems due to the paths that may soon degra
\.N'th smp_le |r_1terpolat|ons_ of collected network statusadathe the application QoS severely. In such cases, the call atmiss
mte_rpqlatlon IS tr'ansfo_rmmg _the _actual_ measure_d datatm_e-p controllers can dynamically change to alternate netwothgpthat
periodic data using piece-wise linear interpolation. Tgla are identified to satisfy QoS requirements for the next fasting
this, let us consider Figure 11. In the figufe,_1,y;—1), (ti, vi), period.

a'nd gtitﬁ’yif{l)IShOW(;he sequllencpe\rposf tr(?]_ l)fﬂ:' wth, arll.d The selected paths in both cases of Grid computing and
(i + 1)-th actual periodic sampling) whose inter-sampling videoconferencing can be enforced in Internet by using MPLS

time is not always the Same as the pgrjod‘o transform the APS explicit routing or by exploiting path diversity based on Itiu
sequence to a pure-periodic sampling sequence, which we ming or overlay networks [23], [24]

Transformed Periodic Samplingf PS), we can draw piece-wise
lines between pairs of two APS points . For example, we caw dra

a line betweent;_1,v;_1) and (t;,y;) as shown in Figure 11. VI. EXPERIMENTAL RESULTS
With this line, we can estimate the measurement vgluat the In this section, we evaluate the performance of our measure-
pure-periodici-th sampling time, i.e.(i — 1) - p. Specifically,j; ment scheduling algorithms. We first perform simulationshwi
is given as follows: synthetic measurement tasks to show the maximum schelitylabi
by the EDF-CE algorithm and the average response times of
0 =yi + M((i —1)-p—t;). on-demand requests by the recursive pushing algorithmn,The
tiv1 =t we present performance evaluation results on an actuahgtte

testbed. Finally, we present the case study results of aqgpbur
Thus, the APS datdt;,y;) with inter-sampling jitter can be EDF-CE to NWS.

transformed to the pure-periodic TPS ddi@ — 1) - p,9;) as

shown in Figure 11. Similarly(¢;+1,y;+1) can be transformed . .)

t0 (i - p, gi+1). Now, the NWS can use the TPS data rather thafiy Performance Evaluation Results using Synthetic Tasks

the original measured data to provide the network perfoo@an Our synthetic task set is comprised of four periodic active
forecast. With this simple interpolation method, we willosh measurement tasks, 2, 73 andr4. The periodp; of each task;

in Section VI-C that our EDF-CE can work well with NWS tois randomly generated from [1000 sec, 10000 sec]. The execut

produce accurate forecasts. time e; of each taskr; is randomly generated from [100 sec,

IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. X, XXX 200X 9

g e e e e e e tasks. This is similar to scheduling the four tasks on fowein
< wl o Algorithm pendent processors. Thus, the maximum schedulable titliza
£ N e reaches up to 400%. As the conflict factor increases, the mamim
E M \‘ --4-- No Orchestration schedu_lable_utilization gradually decrease_s. W_hen thdlicon
2 S factor is 1, i.e., when all four tasks conflict with each other
= LR EDF-CE automatically degenerates to the single procesBér E
3 om S and hence gives the maximum schedulable utilization of 100%.
0;* - Cu The result shows that EDF-CE is leveraging the “maximal but
Z T, only possible” concurrent execution by explicitly considg the
E 100 . . ‘;. conflict d.ependency among tasks. The nol-(.)rchestratiomapb.r
—— always gives the maximum schedulable utlIlzgtlon'of 4009(@&
' Conflict Factor all four tasks can be concurrently executed ignoring thefliobn

dependency. This, however, causes many conflicts as will be
Fig. 12. Maximum schedulable utilization by three schedulibgorithms ~ shown in Section VI-B resulting in many misleading reports o
actual network performance.

4w Agorithm LA Figure 13 illustrates how the maximum schedulable utilirat
£ A —e— EDF-CE;MLA=1.0Mbps of EDF-CE is bounded by the MLA constraigt and conflict
g, N factor. As expected, a higher value pfaccommodates a larger
= Y EDF-CE ; MLA& = 2.5Mbps P , g (0] g
£ \-_‘" EDF-CE [MLA=3.5Mups number of concurrent jobs and hence produces a higher maxi-
= g mum schedulable utilization. For a givenvalue, the maximum
L schedulable utilization is constant up to a certain pointhef
2 \\\ conflict factor and then starts decreasing. Such a trenchiespl
5 . that« is the bottleneck when the conflict factor is small, whereas
E im Ny the conflict dependency becomes the bottleneck when thdatonfl
§ N factor is large.
= 1w » To study the performance of the “recursive push” algorittom f

00 02 04 06 08 10 handling on-demand measurement requests, we simulatermand

Conflict Factor arrivals of on-demand jobs and schedule them over the offline

EDF-CE schedule. The offline specified task set consists wf fo
periodic tasks as before, and their execution times andg®eare
randomly generated from [1 minute, 10 minutes] and [20 ndsut

999 sec]. Since the measurement topology and inter-taskiaton 2.00 minutes], respect_lvely. The execution times and intavad
times of on-demand jobs are also randomly generated from [1

relations can be represented by a task conflict graph, Wmndminute, 10 minutes] and [20 minutes, 200 minutes], respelti

this experiment as changing only the task conflict graph.. Trﬁe performance metric is the average of the response tiares f
task conflict graph of the four tasks is randomly createdgisin 1000 on-demand jobs. We compare our recursive push algorith

parameter called aonflict factor The conflict factor represents’ L
the probability that there is a conflict edge between any agéd with a background approach that schedules an on-demand job i
' the earliest gap present in the offline EDF-CE schedule withi

Therefore, when the conflict factor is 1, the task conflictpgra which the on-demand job can execute to completion. Figure 14

is fully connected. If the conflict factor is O, there is no edg . - C .
between tasks shows that our recursive push algorithm can significantigrowve
For each Sa'm le task set and task conflict araph. we use% e responsiveness for on-demand measurement requeges. No
W . P) grapn, St the average response time in both the background and
maximum schedulable utilization™";_; e;/p; as the perfor-)
. . 1 .. recursive push cases increases as the conflict factor seseahis
mance metric. We determine the maximum schedulable utdiza . . ;
; . ; . - .~ is because a higher conflict dependency among tasks rechees t
by gradually increasing execution times until the scheduling - - ;
. . . concurrent execution of jobs and thus reduces the gapsabiail
algorithms fail to construct a feasible schedule. hedule th .
We compare three scheduling algorithms: to sc edl.J e the on-demand jobs. . .
) ') ~ To estimate the overhead of online scheduling, we measure
« No-orchestration that schedules measurement jobs at thejfe algorithm running time for each on-demand job on 2.4 GHz
release times without considering measurement conflicts,pentium 4 Linux PC. Figure 15 shows the average times as
« EDF that schedules only one measurement job at a tinigcreasing the number of periodic tasks, while fixing thefticn
using the non-preemptive EDF algorithm just like a singlgyctor as 0.8. Even for a large number of periodic tasks witlyh
processor EDF scheduling, and conflict factor, our recursive push algorithm can find thelsiand
« EDF-CE that is proposed in this paper. calculate the updated schedule within tens of millisecofithss
Figure 12 shows the maximum schedulable utilization as it a negligible delay comparing with typical measuremesk ta
creasing the conflict factor. Here, we assume a large MLAay execution times in the order of minutes.
50 Mbps, and thus avoid any MLA bottlenecks when finding the In order to study the overhead of the distributed implemt@ra
schedule. Each plotted point in the figure is the average 00100f the scheduling algorithms, we simulate both centraliaed
random sample task sets. EDF’s maximum schedulable diliza distributed implementations of the recursive push alaritin
is constantly bounded under 100% regardless of the cordlitdf a large scale network. For the network topology, we use the
since it does not allow concurrent execution even when plessi Waxman topology with 1000 nodes produced by the BRITE
On the other hand, our EDF-CE algorithm can maximally wiliztool [25]. From the topology of 1000 nodes, we randomly gelec
the concurrent execution whenever possible. When the confliv nodes as the measurement servers creating a “measurement
factor is zero, EDF-CE allows concurrent execution of alirfo topology” with N measurement servers over the network topology

Fig. 13. Effect of MLA and conflict factor to EDF-CE

IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. X, XXX 200X 10

14 Algarithrm 200 Algorithim

—— Background with EDF-CE —a— Centralized with 100 Servers
134 — = - Recursive Push with EDF-CE — & - Centralized with 200 Servers
--2-- Centralized with 300 Servers
—+ - Distributed with 100 Servers
150 —* - Distributed with 200 Servers
—s— Distributed with 300 Servers

174

125

10.0

74h

Average Response Time (Minutes)
Average Response Time (Minutes)

i a0
0.0 0z 0.4 06 0.8 1.0 0 20 40 BO 80 100 120 140 180
Conflict Factor Arrival Rate {Arrivals/Hour)
Fig. 14. Average response time of on-demand jobs Fig. 16. Response time comparison of the centralized andibdittd

implementations

120

Algarithrm 1.754
—m— Background with EDF-CE

1004 — o - Recursive Push with EDF-CE W
1alq
B e K=K
50 e T e
B 125 ek
5 E0 T
£
i 1004 Algorithm

—e— Centralized with 100 Servers
— & - Centralized with 200 Servers
075 --2&-- Centralized with 300 Servers
—+ - Distributed with 100 Servers
—x- - Distributed with 200 Servers
0.50 4 —— Distributed with 300 Servers

0 20 40 60 80 100 120 140 180 P P P Y
Number of Tasks
0 20 40 60 80 100 120 140 160
Arrival Rate {Arrivals/Hour)

40+

20 4

Implementation Overhead (Seconds)

Fig. 15. Online schedule overhead for on-demand jobs

Fig. 17. Implementation overhead comparison of the centdhliaed
distributed implementations

with 1000 nodes. We consider three differents: 100, 200,
and 300. These choices represent NMIs with a reasonablg larg
number of servers noting that the largest NMI deploymenayod the arrival rate. This is due to the message minimizatiomlo#ipy
i.e., the NLANR AMP project [3] has around 150 measuremeiof Raymond’s algorithm as the number of requests incredsis |
servers deployed all over the world. On top of the measuremeXnother interesting observation in Figure 16 is that thepoese
topology, we use a synthetic task set with 100 offline pedodtime is smaller when the number of servers is larger. This is
measurement tasks. The peripg and the execution time; because the on-demand job workload is scattered over arlarge
of each taskr; are randomly generated from [20 minutes, 20@umber of servers and hence the per-server workload is emall
minutes] and [1 minute, 10 minutes], respectively. There th
execution times of all 100 tasks are scaled such that thé tota
utilization 3°;% e; /p; become 50%. Each task is assigned withy - performance Evaluation Results on an Internet2 Testbed
randomly selectedrc anddst servers. With this offline periodic
task set, we generate the offline schedule using the EDF-CBNe have actually implemented and deployed our scheduling
algorithm. Given the offline schedule, we simulate the ramdoalgorithms in an NMI that is being used to monitor network
arrival of 1000 on-demand jobs with random execution timgsaths on the Internet2 Abilene network backbone. The sdimedu
following the exponential distribution with the average ates. framework consists of a “Scripting Language Interface” and
We conduct the simulation as we increase the average arrigahtral regulator as shown in Figure 18. The scripting laggu
rate from 10 jobs/hour to 150 jobs/hour following the Porssointerface provides a generic and automated way to input mea-
distribution. Each on-demand job is assigned with randomurement specifications such as measurement server tgpolog
selectedsrc and dst servers. In the following figures, we reportperiodic measurement tasks, and MLAs. These specifications
the average of 100 simulation runs. are interpreted by the central regulator to construct sdeed
Figure 16 compares the average response times of on-demtnmgtables for the measurement servers. The construchedisle
jobs by the centralized and distributed implementationshef timetables are transferred to the corresponding serveirstiate
recursive-push algorithm. The centralized and distritbube- the measurement jobs at the planned times.
plementations show almost the same response times. This i©ur Internet2 testbed has five sites each of which is equipped
because the total message passing delay to transfer theénlockvith a measurement server as shown in Figure 19(a). To tollec
the distributed implementation is at most 2 seconds even inttee actual measurement data, we run five periodic measutemen
large scale measurement topology with 300 servers as shownasks as shown Figure 19(b). The resulting task conflictlgiap
Figure 17. Also, such delay does not increase with the isered shown in Figure 19(c).

IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. X, XXX 200X 11

Serverst 45
e e . ST e W
i Configuration "] o o A3t
tool = h3zibeacon; Script ' po o
i i i @i’ = b HluH\'ll l\ ‘l-tf I| ! Vo
; 4 b
Al <<Obtain Requirements >> - Server | 0 | \ Y "! b ! |I : '
|

< Site-1 Measurement-Server

Central Regulator <<Update Schedule>>
(Offline and Online = P— = PZUTEZTLL ednternet

H.323 Beacon MOS

|
! : £ j i !
Scheduling Algorithms) <;Prfcess Rfﬁui;emen;s ~ 35 l ! "-l’ |‘Il I|I‘ ; .
ooku, ate o T
T Y niriesss . ¥ Loy
& R, S Servern 0" 1 i
-)
.................... @ Site-n Measurement-Server 204 I
Server 1 Server2 Server3 Server n It “Yariable
L L 1 1 ! —e— EDF-CE
; — ® — Mo Orchestration
Fig. 18. Structure of Measurement Scheduling Framework 25
0000 0200 0400 06:00 0800 10:00 1200
Time in hh:mm
Fig. 20. H.323 Beacon MOS measurements between Site-3 and Site
S 4.5
K = o
/\@ Mea;;,;e;jy @ T4 =(Site-3, Site-2, Iperf, 60, 20) 44
A — W‘ T2 = (Site-3, Site-4, H.323Beacon, 30, 5) 1.4 -

T3 = (Site-3, Site-1, Iperf, 60, 20)

o AN
T4= (Site3, Site-5, Pathload, 60, 5)
Wit @ WAN @ WAN T5= (Site-1, Site-4, IPerf, 60, 20)

(a) (b) (c)

431

434

124
Fig. 19. Internet2 Testbed Setup

H.323 Beacon MOS

41

40

S S S S S S FF S S S S S S
u’\@ 0"&6"@ e"'ﬂ'o"’@ 0"’&@“@ Q“K{Luﬁ@ 0‘3&@’@ @7&6\@ & \q’e‘b@
Time in day hh:mm
Figure 20 shows the H.323 Beacon MOS repbriseasured
between Site-3 and Site-4 by task To compare EDF-CE and Fig- 21. H.323 Beacon MOS measurements over a week period &etwe
. . . . Site-3 and Site-4

No-Orchestration, we pick the same 12-hour time frames m tw
consecutive days. For the 12-hour time frame of the first day,
we use Np-Orchestration method to run all five measurement ~. .o Study Results with NWS
tasks in Figure 19(b) and collected the MOS reports fregm i))
For the 12-hour time frame of the second day, we use EDF-CEIN this section, we show how well our EDF-CE can work in
and collect the same reports. From these two experiments, gRmbination with NWS. For this purpose, we use actual trace
can observe that the proposed EDF-CE guarantees zero tonflgi@ obtained from NWS measurements for a path traversirig a T
while No-Orchestration causes 50% instances-ofto overlap connection with a total bandwidth 1.5 Mbps [26]. The trac&da
with other tasks. All the overlaps in the No-Orchestratioheslule ?OffeSDOHdS to “hourly”_samples of available bandwidthtenT1
are indeed conflicts since all the tools used in Figure 19¢e) dine over a two-day period. We assume that the trace datatefle
CPU intensive and channel intensive. In terms of MOS acgurath€ “actual” network performance trend on the path. Usirg th
however, we are not sure which curve is better reflecting tif@ce data, we generate two sample sequences, one reprgsent
reality of the network status, since we do not know the “trudh€ ideal pure-periodic samplin@®9 with a period of 2 hours,
real” network status. In order to have a good representaifon @1d another one that corresponds to actual sampWiR5(by
the reality of the network status between Site-3 and Siteet, EDF-CE. The 2-hour-based PPS is obtained by consideriny eve
run only - over a week long period. The results are shown i@ther sample in the trace data assuming that no other migjtor
Figure 21. From the figure, we can affirm that MOS fluctuatiolftSks are present. This 2-hour-based PPS is the ideal reeesutr
between 4.31 and 4.42 is natural in reality between Sitee8 afeduence expected by NWS for 2-hour look-ahead forecalsés. T

Site-4. The MOS values in Figure 20 collected using EDF-CE
4MOS measurements reported by the H.323 Beacon are based on the E

well match the representation of the reality in Flgure 21. IK}Iodel [2], which is a computational model standardized by [Ttb estimate
contrast, the MOS reports by the no-orchestration method {2 perceptual user quality for VoIP. The MOS values arertepimn a quality
Figure 20 show much larger fluctuation, which seems abnormsahle of 1 to 5; [1, 3) range being poor, [3, 4) range being tatxe and [4,
comparing with Figure 21. We can conclude that these abrlorn§hrange being good. MOS values close to 4.41 are desirableigb-quality
fluctuations are due to 50% instancesrgfconflicting with other

tasks.
- T T
Although we do not present the data for Iperfref 73, 75 and S oy ' ’
Pathload ofrs due to the page limit, we observed the similar To= (S, S, H.323Beacon, 90, 10)
measurement anomalies in No-Orchestration but not in EDF- Ty=(S3 Ss, Ping, 30, 5) z; T,

CE. From these observations, we can justify the importarfce o
measurement orchestration for the correct estimation 80v& Fig 22, Four task example for determining inter-sampling time#\PS
status. data

IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. X, XXX 200X

1.05 Variable
Reality
...... PPS-based Forecasting
1.00 = = APS-based Forecasting
i
o
a
= 085 [
= [
=
.-E I
1
2 o ! i
< i ‘
el
[is} | !
0.85 ! |
| |
i y Vi
(S SR S
P
G S N - S H

Time in hh:mm:ss

Fig. 23. Comparison of Forecasts of PPS and APS

105 Variable

Reality
PPS-based Forecasting
= = = TPS-based Forecasting

1.00

09a

0.an

Bandwidth (Mbps)

0.854

i
|
1
1
| i
= |
| i
= |
| i
A Al
0.80 4 | ;
S H o H o H s R K R KD

I S I

Time in hh:mm:ss

Fig. 24. Comparison of Forecasts of PPS and TPS

actual measurement sequence, APS, however, inevitablgtdsv

12

time on the same server or path. From the observation, we
formulate the measurement scheduling problem as a real-tim
scheduling problem.

For the optimal schedulability of periodic measuremenkgas
we use the EDF principle, which has been proven to be optimal
in single processor preemptive scheduling and perform well
in general settings. Our significant enhancement is to égeer
concurrent execution, which clearly differentiates theamee-
ment scheduling problem from the classical real-time sulieg
problems. Our enhanced EDF algorithm called EDF-CE allows
concurrent execution of multiple measurement jobs not amly
the isolated servers and paths but also on the same server and
path, as long as they do not conflict—no misleading repotts T
significantly improves the schedulability and thus allovs ta
run measurements more frequently or saves significant tome f
on-demand requests.

We also propose an online scheduling algorithm to serve on-
demand measurement requests as early as possible. The onlin
algorithm can steal the maximum slack without violating any
periodic deadlines and thus can almost immediately sckedul
the on-demand requests. Therefore, the response times-of on
demand requests can be significantly reduced compared ito the
background processing.

Our proposed scheduling algorithms have actually been im-
plemented and deployed on the Internet2 Abilene networle Th
actual experimental results demonstrate the pertinenderaat-
worthiness of our proposed scheduling algorithms.

ACKNOWLEDGMENT

This work has been supported in part by Research Settlement
Fund for the new faculty of SNU, The Ohio Board of Regents
and the American Distance Education Consortium.

from the PPS due to scheduling of conflicting tasks. To model

the APS, we simulate the EDF-CE with four measurement tasks

in Figure 22. Note that task; serves NWS by providing 2-

hour based sampling of available bandwidth. This simutatio [1]

provides the inter-sampling time distribution gf, which is used
to select the samples from the trace data. The selected sam
approximately represent the actual sequence of samplamett

by m as scheduled by EDF-CE in the presence of three oth

tasks.

Figure 23 shows the reality of the available bandwidth (i.e.[4
one hour based trace data), the NWS forecasted bandwidtg usi

PPS, and the same usingPS. The NWS forecasting using the

ideal PPS closely match the actual trend. However, the NWER
forecasting usingAPS has non-negligible differences from the

reality. This is because of inter-sampling time jitter cadidy

EDF-CE. This problem can be fixed by a simple transformatioff] A. Tirumala, L. Cottrell, and T. Dunigan.
of sampled data as described in Section V. Figure 24 shows tha

the NWS forecasting using the transformed samples denogted
TPS can be very close to the ideal forecasting BypS.

VII. CONCLUSION AND FUTURE WORK

In this paper, we identify the measurement conflict problem[®]

which results in misleading measurements of network ststhen
multiple conflicting measurement tools are executing atstrae

5Due to the one hour based granularity of the original trace,dtne
sequence of selected samples is only an approximation withtiga&on
errors up to one hour. However, it is acceptable in terms ofvstm how
the aforementioned simple interpolation can resolve thea-saepling time
jitter caused by EDF-CE, which ranges from O to 4 hours.

REFERENCES

P. Calyam, C.-G.Lee, P. K. Arava, and D. Krymskiy. Enhanced
EDF Scheduling Algorithms for Orchestrating Network-widectite
Measurements. lfProc. of IEEE RTSS2005.

P. Calyam, W. Mandrawa, M. Sridharan, A. Khan, and P. Schop
H.323 Beacon: An H.323 Application related End-to-end &enfance
Troubleshooting Tool. IProc. of ACM SIGCOMM NetT<004.

T. McGregor, H.-W. Braun, and J. Brown. The NLANR Network
Analysis Infrastructure. INREEE Communications Magazin2000.

P. Calyam, D. Krymskiy, M. Sridharan, and P. Schopis. TBidEo-end
Network Performance Measurement Testbed for Empirical Buttlk
Detection. InProc. of IEEE TRIDENTCOM2005.

E. Boyd, J. Boote, S. Shalunov, and M. Zekauskas. Thaneté E2E
piPES Project: An Interoperable Federation of Measuremerhdins
for Performance Debugging. Technical report, Internet2hmeal
Report, 2004.

Plo]

er
(3]

Measuring eraénd

Bandwidth with Iperf using Web100. Ifroc. of Passive and Active

Measurement Workshpg003.

lP7] A. Downey. Using Pathchar to estimate Internet link clegggstics. In
Proc. of ACM SIGCOMM1999.

[8] C. Dovrolis, P. Ramanathan, and D. Moore. Packet Dispar3iech-

nigues and Capacity EstimatiofeEE/ACM Transactions on Networking

Journal 2004.

R. Wolski, N. Spring, and J. Hayes. The Network Weathemvige: A

Distributed Resource Performance Forecasting Service &addbmput-

ing. Future Generation Computer Systerd999.

J. Liu. Real-Time System#&ublication of Prentice Hall, 2000.

S. Kalidindi and M. Zekauskas. Surveyor: An Infrasture for Internet

Performance Measurements. Pnoc. of INET, 1999.

M. Alves, L. Corsello, D. Karrenberg, C. Ogut, M. Sartcs, R. Sojka,

H. Uijterwaak, and R. Wilhelm. New Measurements with the RIPE

NCC Test Traffic Measurements Setup. Rroc. of Passive and Active

Measurements Workshop002.

[10]
(11]

(12]

IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. X, XXX 200X

[13] B. Gaidioz, R. Wolski, and B. Tourancheau. SynchramgzNetwork
Probes to avoid Measurement Intrusiveness with the Netwaskthér
Service. InProc. of IEEE High-performance Distributed Computing
Conference2000.

[14] H. Wang, D. Zhang, and K. Shin. Change-Point Monitorifay
Detection of DoS Attacks. IEEE Transactions on Dependable and
Secure Computing2004.

[15] P. Calyam, C.-G. Lee, P. K. Arava, D. Krymskiy, and D. Leen-O
TimeMeasure: A Scalable Framework for Scheduling Active Meas
ments. InProc. of IEEE E2EMOIN2005.

[16] K. Raymond. A Tree-based Algorithm for Distributed MatiExclusion.
ACM Transactions on Computer Systerh389.

13

Eylem Ekici received his BS and MS degrees in
Computer Engineering from Bogazici University,
Istanbul, Turkey, in 1997 and 1998, respectively. He
received his Ph.D. degree in Electrical and Computer
Engineering from Georgia Institute of Technology,
Atlanta, GA, in 2002. Currently, he is an Assis-
tant Professor in the Department of Electrical and
Computer Engineering of The Ohio State University,
Columbus, OH. Dr. Ekici’'s current research interests
include wireless sensor networks, vehicular com-
munication systems, and next generation wireless

systems, with a focus on routing and medium access controbqois,

[17] GGF NMWG Request/Response Schema, 2008esource management, and analysis of network architectmpmtocols.

URL:nmng. i nt er net 2. edu.

He is an associate editor of Computer Networks Journal (EElgeand ACM

[18] J. Steiner, C. Neuman, and J. Schiller. Kerberos: An enttbation Mobile Computing and Communications Review. He has also semgethe

service for open network systems. fmoc. of USENIX1998.

[19] F. Berman and R. Wolski. Scheduling from the Perspectifehe
Application. In Proc. of High-Performance Distributed Computing
Conference1996.

[20] A. Grimshaw, W. Wulf, J. French, A. Weaver, and P. Reysoldegion:
The Next Logical Step Towards a Nationwide Virtual Compufegch-
nical report, University of Virginia Technical Report C8-21, 1994.

[21] T. Defanti, |. Foster, M. Papka, R. Stevens, and T. KghfuOverview
of the I-WAY: Wide Area Visual Supercomputingnternational Journal
of Supercomputer Applicationg996.

[22] D. Reed and C. Mendes. Intelligent Monitoring for Adatdn in Grid
Applications. InProc. of the IEEE 2005.

[23] R. Prasad, M. Jain, and C. Dovrolis. Effects of Intetr@palescence on
Network Measurements. IRroc. of Passive and Active Measurement
Workshop 2004.

[24] J. Han and F. Jahanian. Impact of Path Diversity on Muitined and
Overlay Networks. InProc. of IEEE DSN2004.

[25] Boston University. BRITE: Representative Internepdtogy Generator,
2006. http://www.cs.bu.edu/brite.

[26] Middleware Initiative. NWS Users Guide, 2006.
http://archive.nsf-middleware.org/documentation/NMI-
R5/0/gridscenter/NWS/usegsiide.htm.

Prasad Calyamreceived the BS degree in Electrical
and Electronics Engineering from Bangalore Uni-
versity, India, and the MS degree in Electrical and
Computer Engineering from The Ohio State Uni-
versity, in 1999 and 2002, respectively. Currently,
he is a Ph.D. Candidate in Electrical and Computer
Engineering at The Ohio State University. He is also
currently a Senior Systems Developer/Engineer at
OARnet, a division of the Ohio Supercomputer Cen-
ter. His current research interests include network
management, active/passive network measurements,
voice and video over IP and network security. He is a studembloee of the
IEEE.

Chang-Gun Lee received the BS, MS and Ph.D.
degrees in Computer Engineering from Seoul Na-
tional University, Korea, in 1991, 1993 and 1998,
respectively. He is currently an Assistant Professol
in the School of Computer Science and Engineer
ing, Seoul National University, Korea. Previously,
he was an Assistant Professor in the Departme
of Electrical and Computer Engineering, The Ohio
State University, Columbus from 2002 to 2006, a
Research Scientist in the Department of Computer
Science, University of Illinois at Urbana-Champaign
from 2000 to 2002, and a Research Engineer in the Advanceztdieim.
Research Lab., LG Information and Communications, Ltd. fro®@81i® 2000.

His current research interests include real-time systermaplex embedded
systems, ubiquitous systems, QoS management, wireless actwarks, and
flash memory systems. Dr. Lee is a member of the IEEE Computer Society

TPC co-chair of IFIP/TC6 Networking 2007 Conference.

Mark Haffner received the BS degree in Electrical
Engineering from University of Cincinnati in 2006.
Currently, he is pursuing an MS degree in Electri-
cal and Computer Engineering at The Ohio State
University. His current research interests include
active/passive network measurements, RF circuit de-
sign and software-defined radios. He is a student
member of the IEEE.

Nathan Howesis pursuing a BS degree in Com-
puter Science and Engineering at The Ohio State
University. His current research interests include
active/passive network measurements and network
security. He is a student member of the IEEE.

