
IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. X, XXX 200X 1

Orchestration of Network-wide Active
Measurements for Supporting Distributed

Computing Applications
Prasad Calyam,Student Member, IEEE,Chang-Gun Lee,Member, IEEE,Eylem Ekici, Member, IEEE,

Mark Haffner,Student Member, IEEE,and Nathan Howes,Student Member, IEEE

Abstract— Recent computing applications such as videocon-
ferencing and Grid computing run their tasks on distributed
computing resources connected through networks. For such
applications, knowledge of the network status such as delay,
jitter, and available bandwidth can help them select proper
network resources to meet the Quality of Service (QoS) re-
quirements. Also, the applications can dynamically change the
resource selection if the current selection is found to experi-
ence poor performance. For such purposes, Internet Service
Providers (ISPs) have started to instrument their networks with
Network Measurement Infrastructures (NMIs) that run activ e
measurement tasks periodically and/or on-demand. However,
one problem that most network engineers have overlooked is
the measurement conflict problem, which happens when multiple
active measurement tasks inject probing packets to the same
network segment at the same time, resulting in misleading reports
of network performance due to their combined effects. This paper
proposes enhanced EDF (Earliest Deadline First) algorithms
that allow “Concurrent Executions” to orchestrate offline/online
measurement jobs in a conflict-free manner. The simulation study
shows that our measurement scheduling mechanism can improve
the schedulable utilization of offline measurement tasks up to
300% and the response time of on-demand jobs up to 50%.
Further, we implement and deploy our scheduling mechanism
in a real working NMI for monitoring the Internet2 Abilene
network. As a case study, we show the utility of our algorithms
in the widely-used Network Weather Service (NWS).

Index Terms— Active network probes, Measurement conflict,
Real-time scheduling, Concurrent execution, Network Weather
Service.

I. I NTRODUCTION

Recent computing applications such as videoconferencing and
Grid computing utilize distributed computing resources connected
through the Internet. Thus, their user-level performance relies on
the status of the Internet paths they use1. If we can measure and
predict the status, we can select the computing resources and their
connecting Internet paths that can soft guarantee the user-level
QoS.

A preliminary version of this paper has appeared in the proceedings of
IEEE Real-Time Systems Symposium (RTSS), 2005 [1].

Manuscript received July 12, 2006; revised February 02, 2007.
P. Calyam is with OARnet and The Ohio State University, Columbus,

OH 43210, USA, Email: pcalyam@oar.net; C. -G. Lee, the corresponding
author, is with the Seoul National University, Seoul, 151-742, Korea, Email:
cglee@snu.ac.kr; E. Ekici, M. Haffner and N. Howes are with The Ohio
State University, Columbus, OH 43210, USA, Email: ekici@ece.osu.edu,
{haffner.12,howes.16}@osu.edu

1There are several ways to map the network measurements to the user-level
quality. The E-Model [2], for example, is a standardized computational model
by ITU-T to estimate the user-level VoIP quality from the measured network
status.

Therefore, for the success of distributed computing applica-
tions, it is critical to collect Internet status measurements in an ac-
curate and timely manner. Fortunately, Internet Service Providers
(ISPs) have started to instrument their networks with Network
Measurement Infrastructures (NMIs) [3], [4], [5] for continuous
monitoring and estimation of network-wide status. For this, they
use active measurement tools such as Ping, Traceroute, H.323
Beacon [2], Iperf [6], Pathchar [7] and Pathload [8] that actively
inject probing packets to collect useful measurements suchas end-
to-end delay, jitter, loss, bandwidth, etc. The NMIs periodically
run these measurement tools on the measurement servers at
strategic points to collect the periodic sampling of network status,
which is essential for network status prediction [9]. They also can
run the measurement tools on-demand for applications that require
a more detailed look about certain network paths.

When executing the periodic and on-demand measurement
jobs, an important problem we recently observed is themea-
surement conflict problem, which has been overlooked by most
network engineers. Since active measurement tools consumenon-
negligible amount of network resources for injecting probing
packets, if two or more measurement jobs run concurrently over
the same path, they can interfere with each other resulting in
misleading reports of network status. Our experiment in Figure 1
illustrates the measurement conflict problem. In the experiment,
we connect two measurement servers by a LAN Testbed with
1500 Kbps bandwidth and run one H.323 videoconferencing
session at 768 Kbps dialing speed as the background traffic.
Thus, the remaining bandwidth should be approximately 732
Kbps. Given that streaming media and videoconferencing traffic
is essentially UDP traffic, Iperf in UDP mode is popularly used
to measure the available bandwidth. Thus, we make the two
servers occasionally initiate Iperf jobs to monitor the available
bandwidth. When we make two Iperf jobs run back-to-back
with mutual exclusion (shown in the left-half of Figure 1), their
measurements are in agreement with our expectation. However,
when we intentionally make two Iperf execution durations overlap
(shown in the right-half of Figure 1), it causes misrepresentation
of the remaining bandwidth, merely due to conflicts of two Iperf
jobs. This implies that if measurement tools are initiated without
being orchestrated with each other, their execution duration may
overlap resulting in misleading measurement reports.

This observation motivates ascheduling problem of measure-
ment jobs for orchestrating them to prevent conflicts while still
providing the periodicity of periodic measurement jobs andquick
response to the on-demand measurement jobs.The nature of the
problem is similar to real-time scheduling even though the time
granularity of periods is much coarser (order of minutes) than that



IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. X, XXX 200X 2

Fig. 1. Iperf test results with and without mutual exclusion of measurements

of the classical real-time systems. The measurement scheduling
problem, however, has a fundamental difference from the classical
real-time scheduling problems: More than one measurement job
can be scheduled at the same time on the same server and the same
network path as long as they can produce the correct measurement
data. We call this a “concurrent execution” of multiple jobswith
“no conflict”.

This paper proposes conflict-free scheduling algorithms for
measurement jobs leveraging the real-time scheduling principles
and the concurrent execution. More specifically, the contributions
of this paper can be summarized as follows:

• We propose an offline scheduling algorithm based on the
EDF principle [10] but allowing concurrent execution if
possible, which can significantly improve the schedulability
of a given set of periodic measurement tasks,

• We propose an online mechanism that can steal left-over
times from the offline schedule to serve on-demand mea-
surement requests as early as possible without violating the
periodicity requirements of existing measurement tasks,

• We implement an actual NMI scheduling framework
equipped with the proposed scheduling mechanisms to mea-
sure an operational network, Internet2 Abilene network.

The rest of this paper is organized as follows: The next section
summarizes the related work. Section III formally defines the
measurement task scheduling problem. Section IV presents our
offline and online measurement scheduling algorithms. Section V
presents our case study for applying the proposed scheduling
algorithms to the Network Weather Service (NWS) and its use
for distributed computing. In Section VI, our experimentalresults
from both simulations and actual implementation are presented.
Finally, Section VII concludes the paper.

II. RELATED WORK

Many of the earliest Network Measurement Infrastructures
(NMIs) used simplePing and Traceroutemeasurements without
paying attention to possible overlaps of their execution durations.
This is acceptable since they are neither CPU nor channel inten-
sive, allowing overlaps without causing measurement conflicts.
However, many of today’s NMIs such as NLANR AMP [3],
Internet2 E2EpiPES [5], NWS [9], Surveyor [11] and RIPE [12],
employ toolkits that have several CPU and/or channel intensive
measurement tools, which may cause measurement conflict prob-
lems. Nevertheless, these NMIs use a simple scheme that creates
cron jobs that start active measurements at the planned periodic
time points without paying attention to avoiding measurement

Fig. 2. Measurement Topology constructed for a set of networkpaths

conflicts. As a result, they can give erroneous measurement results
and fail to reflect the actual network status.

To address the measurement scheduling problem, [3] and [11]
use a simple round-robin approach where measurement servers
take turns such that only one tool executes at a time. In NMIs
such as [5], a resource broker scheduling scheme is used. Using
this resource broker scheme, multiple measurement requests are
queued for scheduling and executed on a first-come first-serve
basis on a measurement server. The network weather service
(NWS) uses a token-passing mechanism [13] in an attempt to
meet the measurement periodicity requirements while obtaining
accurate network status information. This mechanism allows only
a single server in possession of a token to initiate measurements.
The round-robin, resource broker, and token-passing are similar
in principle, i.e., they allow only one instance of measurement
to be executed at a time. Therefore, they cannot leverage the
concurrent execution of multiple measurement jobs and hence
limit the schedulability.

In addition to our contributions from the scheduling perspec-
tive, another significant contribution is our systematic scheduling
framework that automates the whole process from the mea-
surement specification to the runtime measurement data collec-
tion. None of the previous schemes provide such a systematic
framework. As a result, existing schemes require considerable
time and effort to specify distinct sampling requirements,add or
delete measurement tasks, and generate measurement schedules
accordingly. Furthermore, it is hard to implement the policy con-
tracts among multiple ISPs for measurements across ISP borders.
With our systematic measurement framework, however, the entire
process can be automated and the manual effort minimized.

III. PROBLEM DESCRIPTION ANDTERMINOLOGY

An ISP deploys measurement servers at strategic points to
continuously estimate the network-wide status. The measurement
servers measure the network paths to other servers. They are
attached to core routers as shown in the case of the Denver core
router in Figure 2. The paths to be measured are specified by a
measurement topology, which can be formally represented bya
graphG = (N, E), whereN is the set of measurement servers
andE is the set of edges between a pair of servers. Figure 2 shows
an example measurement topology that consists of measurement
serversN = {S1,S2,S3,S4,S5} and edges amongS1, S2, S3, S4,
andS5.

On top of the measurement topology, a set of periodic mea-
surement tasks is specified. Each periodic measurement taskτi

is specified to measure a path from a source serversrci to a



IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. X, XXX 200X 3

destination serverdsti using an active measurement tooltooli.
The measurement should be periodically repeated with period pi.
The j-th instance (orjob) of τi is denoted byτij . The time when
the j-th job τij is released is called therelease timeand simply
given by (j − 1)pi. The execution time of a single measurement
instance is denoted byei. Then, a periodic measurement task can
be represented using the similar notion of a real-time periodic
task as follows:

τi = (srci, dsti, tooli, pi, ei).

The set of all offline specified periodic measurement tasks is
denoted by

Γ = {τ1, τ2, · · · , τn}.

We also define ahyperperiodfor task setΓ as the least common
multiple of all the task periods in the set. Thus, each hyperperiod
repeats the same pattern of release times. Therefore, the same
schedule constructed for a single hyperperiod can be used repeat-
edly.

In addition to such offline specified measurement tasks, there
can be on-demand measurement requests to quickly collect cus-
tomized measurements. For example, an Internet network engi-
neer might want to trace-back the source of a DoS attack as
soon as possible by running on-demand measurement jobs over
suspicious paths [14]. Such an on-demand measurement request
is denoted by

Jk = (srck, dstk, toolk, ek).

For such an on-demand request, a quick response is desirable.
Thus, as a performance metric, we use theresponse time, which
is defined as the time difference between the time when the
measurement job is requested and the time when the request is
finally served.

Our problem is to schedule the aforementioned offline and
online measurement jobs on a given measurement topology.
Unlike the OS-level schedule that determines when the OS threads
and packets can be executed and transmitted, the measurement-
level scheduling problem is to determine the start and stop times
of a measurement tool whose execution can last a few minutes to
have a statistically stable measure. For such measurement-level
scheduling, an important constraint is a measurement conflict
problem. Overlapping the execution intervals of two measurement
jobs may or may not be problematic, depending on the measure-
ment tools used. If a measurement tool is neither CPU intensive
nor channel intensive like Ping, it does not interfere with other
tools. Thus, overlapping its execution interval with others on the
same server and/or path can still give us correct measurement
reports. Such an overlap is called a “concurrent execution”with
no conflict, which is desirable to improve the schedulability.
On the other hand, other active measurement tools such as
Iperf [6] and Pathchar [7] are CPU intensive for sophisticated
calculations and/or channel intensive due to a large amountof
probing packets. Thus, overlapping their execution intervals over
the same measurement server or the same channel can cause
serious interference and lead to misleading reports of the network
status. We define ameasurement conflictas an execution overlap
of multiple measurement jobs that results in misleading reports.

In addition to the measurement conflict issue, one additional
constraint of the measurement-level scheduling problem isthe
Measurement Level Agreement(MLA). Utilizing excessive net-
work resources just for active measurements is not appropriate

(c) potential task conflict graph

Iperf H.323Beacon Pathchar Ping

Iperf

Pathchar

Ping

H.323Beacon

1 1 1

1 1 1

1 1 1

0 0 0

0

0

0

0

(a) measurement topology (b) task set

(e) task conflict graph(d) tool conflict matrix

S1

S2

S3

S4

S5

τ1

τ1

τ1 τ2

τ2

τ2

τ3

τ3

τ3 τ4

τ4

τ4

τ1 = (S1, S2, Pathchar, 60, 10)
τ2 = (S2, S5, Iperf, 40, 10)

τ3 = (S4, S3, H.323Beacon, 20, 5)
τ4 = (S4, S5, P ing, 30, 5)

Fig. 3. Task conflict graph

since it significantly degrades the regular user traffic perfor-
mance. Thus, we need a regulation on the measurement traffic.
Since an end-to-end measurement could involve analyzing data
along network paths of multiple ISPs, we envision “measurement
federations” in which many ISPs participate in inter-domain
measurements based on MLAs for reaping the mutual benefits
of performing end-to-end path measurements. MLAs can specify
that only a certain percentage (1% - 5%) or only a certain
number of bits per second (1 Mbps - 2 Mbps) of the network
bandwidth in ISP backbones could be used for measurement
traffic, which can ensure that the actual application trafficis not
seriously affected by measurement traffic2. We use the notationψ
to denote the MLA specification in an NMI. In the measurement-
level scheduling problem, the sum of the bandwidth usage by
concurrent measurement jobs over the same channel should be
less thanψ at all times.

From the above inputs and constraints, the measurement-level
scheduling problem can be formally described as follows:

Problem: Given measurement topologyG = (N, E) and
offline specified measurement task setΓ = {τ1, τ2, · · · , τn}, find
the schedule of measurement jobs such that all deadlines (equal
to periods) can be met while preventing conflicts and adhering to
the MLA constraintψ. For an on-demand measurement request
Jk, schedule it as early as possible without violating deadlines of
offline tasks inΓ, conflict constraint, and MLA constraint.

IV. M EASUREMENTSCHEDULING ALGORITHMS

In this section, we first present an offline scheduling algo-
rithm to construct a schedule table for a given set of periodic
measurement tasksΓ = {τ1, τ2, · · · , τn}. Then, we present an
online algorithm to schedule an on-demand measurement request
Jk without missing deadlines of periodic tasks. We first assume
existence of a central regulator that governs the global schedule
and later relax this assumption.

A. Offline Scheduling Algorithm

In our measurement scheduling framework, a central regulator
collects all specifications of periodic measurement tasks and
builds a schedule table that determines times when measurement
jobs can start and stop at each server. To build such a table,

2Since most active measurement tools have options to specify packet sizes
and bandwidth usage of a measurement test, simple calculationscan be used
to determine how much of a network’s bandwidth will be used by a given set
of active measurements, over a certain period of time.



IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. X, XXX 200X 4

0 10 20 30 40 50 60 70 80 90 110 120100

τ1

τ2

τ3

τ4

τ11 τ12

τ21 τ22 τ23

τ31 τ32 τ33 τ34 τ35 τ36

τ41 τ42 τ43 τ44

conflict conflict conflict

conflict

Fig. 4. No orchestrated schedule

0 10 20 30 40 50 60 70 80 90 110 120100

τ1

τ2

τ3

τ4

τ11 τ12

τ21 τ22 τ23

τ31 τ32 τ33 τ34 τ35 τ36

τ41 τ42 τ43 τ44

Fig. 5. Orchestration based on single processor non-preemptive EDF schedule

the first step is to make atask conflict graphby combining the
measurement topologyG and the task setΓ. Figure 3 shows an
example problem. For the given measurement topology and the
task set in Figures 3(a) and (b), we examine each pair of tasks
τi andτj to see if they share the same source server, destination
server or part of the paths between source and destination servers.
If so, the two tasks may “potentially” conflict if scheduled
concurrently. In Figures 3(a) and (b),τ1 and τ2 shareS2 and
thus we add a potential dependency edge between them in the
potential task conflict graph as in Figure 3(c).τ2 and τ3 share
the path and thus a dependency edge is added. On the other
hand,τ1 does not share any network resource withτ3 and thus
no edge is added. Even if two tasks share network resources, they
may not actually conflict depending on the active measurement
tools used. Based on our empirical studies in [15], we could
determine which tools conflict if they run concurrently. Theresult
is summarized by the tool conflict matrix in Figure 3(d). For
example, Iperf and Pathchar conflict if they run concurrently on
the same server since both intensively use server and channel
resources for active measurement. On the other hand, Ping just
injects small probing packets and hence does not conflict with
any other tools. Considering the tool conflict matrix, the potential
task conflict graph in Figure 3(c) can be converted to the final
task conflict graph of Figure 3(e). The edge between two tasksin
the task conflict graph means that they should be scheduled ina
mutually exclusive manner, otherwise a conflict happens resulting
in misleading reports.

Now, we can consider only the final task conflict graph to
compute the offline schedule. One obvious solution is to start
a measurement job at the source server at its release time without
considering measurement conflict and MLA constraints. Figure 4
shows such a schedule for the problem given in Figure 3. In
the figure, the upward arrows indicate the release times of the
periodic measurement tasks. The schedule, however, causesa
number of conflicts that result in misleading report of the actual
network performance. Another approach is to run only a single
measurement job at any time instant using a non-preemptive EDF

scheduling algorithm. Figure 5 shows such a schedule for the
same problem. It can completely prevent conflicts. However,it
does not allow concurrent execution of multiple jobs even ifthey
do not conflict, which degrades the schedulability.

We aim to find a schedule in between these two extremes
such that conflicts are completely prevented while maximizing
the concurrent execution whenever possible. For this, we propose
the EDF-CE (i.e., EDF with Concurrent Execution) algorithmthat
schedules measurement jobs in the EDF order while allowing
concurrent execution if jobs do not conflict. The algorithm is
formally described in the following:

EDF-CE: for the given task conflict graph, find the measurement
schedule during a hyperperiod

Input: task setΓ and task conflict graph
Output : start timestij and finish timeftij for each jobτij in a
hyperperiod
begin procedure
1. Initialize rt list with the ordered list of all release times in a
hyperperiod
2. Initialize ft list = {} /* ordered list of finish times*/
3. Initialize pending job queue = {}
4. do
5. time = get the next scheduling time point fromrt list
andft list
6. add all newly released jobs attime to pending job queue
in EDF order
7. for each jobτij in pending job queue in EDF order
8. if τij does not conflict with any of already scheduled
jobs attime and
9. schedulingτij at time does not violate MLA
constraintψ
10. stij = time andftij = time + ei

11. if ftij is later than the deadline ofτij

12. return error /* infeasible task set */
13. end if
14. removeτij from pending job queue
15. addftij to ft list in order
16. else
17. do nothing /*τij will be considered again at the
next scheduling time point in the outer loop */
18. end if
19. end for
20. until time == hyperperiod
end procedure

The EDF-CE algorithm maintains the ordered list of release
times rt list and the ordered list of finish timesft list. Line
1 initializes rt list with all release times in a hyperperiod. In
Figure 6, the release times are 0, 20, 30, 40, 60, 80, 90, 100, and
120. Line 2 initializesft list as empty since no job is scheduled
yet. Note that the only time points when we need to make a
scheduling decision are either when a new job is released or a
current executing job is finished. Thus, we call times inrt list
and ft list “scheduling time points”. In addition, the algorithm
maintains apending job queue that holds all jobs released but
not scheduled, in the EDF order. Line 3 initializes it as empty. The
do-until loop from Line 4 to Line 20 progresses the virtual time
variabletime upto a hyperperiod while determining the schedule
at all scheduling time points. Line 5 movestime to the next
scheduling time point. Then, Line 6 adds all newly released jobs



IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. X, XXX 200X 5

0 10 20 30 40 50 60 70 80 90 110 120100

(a) EDF−CE schedule

(b) Schedule table for each server

τ1

τ2

τ3

τ4

S1

S2

S3

S4

S5

τ11

τ11

τ12

τ12

τ21

τ21

τ22

τ22

τ23

τ23

τ31

τ31

τ32

τ32

τ33

τ33

τ34

τ34

τ35

τ35

τ36

τ36

τ41

τ41

τ42

τ42

τ43

τ43

τ44

τ44

Fig. 6. EDF-CE Schedule

to the pending job queue. The for loop from Line 7 to Line
19 examines the pending jobs in the EDF order and determines
whether they can start attime without causing any conflict and
without violating MLA ψ (see Lines 8 and 9). If so, the job
τij ’s start time stij is determined astime and its finish time
ftij is determined astime + ei in Line 10. If the finish time
ftij is later than the deadline of jobτij in Line 11, we cannot
construct a feasible schedule meeting all deadlines and hence
return error in Line 12. If we can meet the deadline ofτij , we can
continue. In Line 14,τij is removed from thepending job queue.
Also, its finish timeftij is added toft list so that ftij can
be considered as a new scheduling time point in the outerdo-
until loop. If τij cannot be scheduled attime (Line 16), it is
kept in thepending job queue and can be considered again at
the next scheduling time point by the outer loop. Note that the
algorithm tries to concurrently start as many jobs as possible in
the EDF order attime as long as they neither conflict nor violate
the MLA. Figure 6(a) shows such EDF-CE schedule for the same
problem of Figure 3. At time 0 of the EDF-CE schedule, note that
τ11, τ31, andτ41 are executed concurrently but notτ41, which is
maximizing the concurrent execution guaranteeing no-conflict.

Once we find the EDF-CE schedule, we can convert it to the
measurement schedule table of each server considering the source
server of each job. Figure 6(b) shows the schedule tables of all the
five servers. Such constructed schedule tables are transferred to
corresponding servers so that they can start and stop the planned
measurement jobs.

B. Online Scheduling of On-Demand Measurement Requests

At the run time, while each server executes periodic mea-
surement tasks according to the pre-computed schedule table, a
network engineer can request an on-demand measurementJk.
For now, we assume that such a request is received by the central
regulator.

Upon the arrival of an on-demand requestJk =
(srck, dstk, toolk, ek), our goal is to serve it as early as
possible without missing any deadlines of periodic measurement
tasks. For this, we propose arecursive pushalgorithm that
recursively pushes offline scheduled periodic jobs within their
deadlines. This push can create a left-over time called aslack
as early as possible and this slack time can be used to schedule

0 10 20 30 40 50 60 70 80 90 110 120100

modified task conflict graph

on−demand request

schedule replacement

τ1

τ1

τ2

τ2

τ3

τ3

τ4

τ4

Jk

Jk

Jk

τ11

τ12

τ12

τ21 τ22 τ23

τ31 τ32 τ33

τ34

τ34 τ35 τ36

τ41 τ42

τ43

τ43 τ44

Fig. 7. Recursive pushing for maximum slack calculation

Jk. The basic idea of recursive push can be best illustrated
by Figure 7 that shows the same EDF-CE schedule as above.
Suppose that an on-demand requestJk = (S2, S3, Iperf, 10)
arrives at time 50. We assume thatJk conflicts with τ1, τ2, and
τ3 as shown by the modified task graph. The central regulator
cannot allowJk to start at its arrival time 50 since it conflicts
with τ22. Thus, the central regulator calculates the maximum
slack from starting at 55. For this, the central regulator calls
push(τ12) and push(τ34) to determine how muchτ12 and τ34
can be pushed to make the maximum slack forJk. The push
operation is recursive. To determine the maximumpush of τ12,
we first have to know the maximumpush of the dependent
job τ23. Thus, push(τ12) recursively callspush(τ23) and in
turn push(τ23) calls push(τ36). On the other hand,τ36 does
not conflict with any other offline scheduled jobs while being
pushed up to its deadlined36 = 120. Such a job with which
the recursion can terminate is called aterminal job. Similarly,
τ34 is also a terminal job. For a terminal jobτij , the push
procedure can determine its new pushed finish timenew ftij
and new pushed start timenew stij = new ftij −ei without any
further recursive calls. Thepush operation is formally defined
as follows:

push: return the new start time of input jobs after maximum
push

Input: τij

Output : new start time after maximum pushnew stij
begin procedure
1. if τij has no conflicting jobs scheduled up todij /* terminal
job */
2. slide τij from stij to dij − ei until MLA violation is
observed attMLA (tMLA < dij).
3. if tMLA is found, the new finish timenew ftij = tMLA.
otherwise,new ftij = dij .
4. new start timenew stij = new ftij − ei.
5. else/* not a terminal job */
6. new finish timenew ftij = dij .
7. for each conflicting taskτi′j′ up to dij

8. new ftij = min(new ftij , push(τi′j′ )).
9. end for



IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. X, XXX 200X 6

10. slideτij from stij to new ftij − ei until MLA violation
is observed attMLA (tMLA < new ftij).
11. if tMLA is found, the new finish timenew ftij = tMLA.
otherwise keepnew ftij .
12. new start timenew stij = new ftij − ei.
13. end if
14. returnnew stij .
end procedure

This algorithm returns the new start timenew stij after max-
imally pushingτij . If τij is a terminal job, its new finished time
can be pushed up to its deadlinedij if we could ignore the MLA
constraint. In order to consider the MLA constraint, in Line2,
we slideτij ’s execution interval up todij to find a earliest time
point tMLA when the MLA constraint can be violated, if any.
If such time pointtMLA is found, tMLA is the latest possible
pushed finish time ofτij without violating the MLA constraint.
Thus, new ftij is set to tMLA in Line 3. Otherwise, the new
finish time can be pushed up todij , that is,new ftij = dij in
Line 3. Once the new finish time is determined, Line 4 can simply
calculate the new start time, i.e.,new stij = new ftij − ei.

If τij is not a terminal job, Lines 7, 8, and 9 recursively call
push for all dependent jobs to figure out the minimum new start
time of all dependent jobs. If we ignore the MLA constraint, the
minimum of the deadlinedij and the new pushed start times of all
dependent jobs is the latest possible new finish timenew ftij for
τij . Lines 10 and 11 can advance the new finish timenew ftij
considering the MLA constraint in the same way as in the terminal
job case. Withnew ftij , Line 12 calculates the new start time as
new stij = new ftij − ei. Finally, Line 14 returnsnew stij .

Consideringnew stij of all dependent jobs ofJk, we can
calculate the maximum slack that can be used for the on-demand
requestJk starting from the current scheduling time pointt. If
the maximum slack is larger than the required execution time
ek and also if executingJk from t to t + ek does not violate
the MLA constraint, the central regulator sets timet as the start
time of Jk and push dependent periodic jobs as needed. The
piece of schedule affected byJk (see “schedule replacement”
in Figure 7) is transferred to the corresponding servers so that
they can temporarily use the updated schedule piece insteadof
the original schedule, to accommodateJk. If the above condition
does not hold, the central regulator examines the next scheduling
time point to recalculate the maximum slack and so on, until it
finds enough slack time during whichJk can be executed without
violating the MLA constraint.

C. Distributed Implementation of Scheduling Algorithms

The aforementioned scheduling algorithms assume a central
regulator that collects all offline/online measurement requests
and builds/updates the global schedule. A centralized regulator
is popular in NMIs because it is convenient to initiate and
collect measurements into a central database. However, such a
centralized mechanism could incapacitate an NMI when thereis
a failure of the central regulator. Also, some applicationsrequire
distributed measurement scheduling to gain greater flexibility
to dynamically determine the locations of measurement data
collection and subsequent analysis. To address these issues, this
section presents a mechanism to implement the above scheduling
algorithms in a decentralized way.

In a distributed setting, measurement requests (e.g., add/remove
periodic measurement tasks and on-demand measurement jobs)
arrive at their local servers, possibly concurrently. If each server
concurrently updates the schedule upon the arrival of requests,

(a) Measurement topology (b) Minimal spanning tree (c) Initial lock placement

S1S1S1

S2S2S2

S3S3S3 S4S4S4

S5S5S5

Fig. 8. Minimal spanning tree for the measurement server topology

critical section

critical section

commitInfo

commitInfo

time

LOCK−REQ LOCK−APP

LOCK−REQ

LOCK−REQ

LOCK−APP

LOCK−APP

LOCK−APP

commitInfo

commitInfo

S1
S1S1

S1S1S1

S2

S2S2S2

S2S2

S3

S3

S3S3S3

S3

S4

S4S4S4

S5

S5

S5
S5

S5S5S5

S5

J1

J2

t1

t2 t3

t4

∆t

∆t

Fig. 9. Distributed schedule update

it breaks the consistency of the schedule and in turn creates
measurement conflicts. Therefore, the issue is to serializethe
distributed concurrent requests such that the schedule canbe
updated in a consistent way. For this, we propose to use Ray-
mond’s algorithm [16] developed for distributed synchronization.
This section describes how Raymond’s algorithm works with our
scheduling algorithms maintaining the schedule consistency in a
distributed way.

For the measurement topology given in Figure 8 (a) as an
example, we first create the minimal spanning tree as in Fig-
ure 8 (b). This tree is used to maintain a tree-wide single lock
with minimal exchange of messages [16]. The basic idea is to
allow only the lock holder to commit the arrival of a request at a
time, which assures the global serialization of concurrentrequests.
In the initialization phase, we place the lock at any server,say
S2 in the example of Figure 8 (b), and make each server set its
dir variable to the neighbor toward the lock holder as shown in
Figure 8 (c).

Upon the arrival of a new request at a server, the server
exchanges messages with others along the spanning tree, and
eventually gets the lock. Then, it commits the arrival of the
request by sending this commitment information to all the affected
servers. All the servers that receive this commitment run the
same EDF-CE (for an add/remove request of a periodic task)
or recursive-push (for an on-demand job) algorithm to update
its schedule table. This procedure can be best illustrated by the
example of Figure 9. Suppose that the initial lock holder isS2 as
shown in the left-most tree. Also, assume that an on-demand job
J1(S5, S4, Iperf, 10) arrives atS5 at timet1. SinceS5 is not the
lock-holder, it enqueues its IDS5 in the S5’s queue and sends
a LOCK-REQUEST message to the neighborS3 pointed by its
dir variable.S3 is not the lock-holder either and thus it enqueues
the requester’s IDS5 and sends a LOCK-REQUEST message to
the neighborS2 pointed by itsdir variable. In the meantime,
suppose that another requestJ2(S1, S3, Iperf, 10) arrives atS1

at time t2. SinceS1 is not the lock-holder, it enqueues its IDS1



IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. X, XXX 200X 7

and sends a LOCK-REQUEST message toS2 pointed by itsdir
variable. WhenS1’s LOCK-REQUEST reaches the lock-holder
S2, S2’s queue is empty and it is not updating the schedule (not
in the critical section), and thus it can immediately yield its lock
to the requesterS2 by sending a LOCK-APPROVAL message to
the requesterS1. It is no longer the lock-holder and set itsdir
variable toS1 (see the second tree). WhenS1 receives the LOCK-
APPROVAL att3, it notices that the head of the queue is its own
ID and thus can enter the critical section to commitJ2’s arrival.
Since theJ2’s arrival needs to be viewed by all affected servers in
a consistent way,S1 adds the sufficient delay∆t of commitment
transmission tot3 and considerst3 +∆t as the committed arrival
time of J2. Then,S1 sends the commitment information (J2 and
t3+∆t) to the all affected servers,S2 andS3. Now,S1, S2, andS3

can run the same recursive-push algorithm for insertingJ2 with
the same committed arrival time oft3 + ∆t. When the LOCK-
REQUEST message fromS3 arrives atS2, S2 is not the lock-
holder and itsdir is pointingS1. Thus, the LOCK-REQUEST is
forwarded toS1. When the LOCK-REQUEST reachesS1, it is the
lock-holder but it is already in the critical section to commit J2.
Thus,S1 enqueues the requester’s IDS2. After that,S1 leaves the
critical section att3 + ∆t. At this time,S1 notices that the head
of its local queue isS2 and thus sends a LOCK-APPROVAL
message toS2 and sets itsdir toward S2. S2 and S3 in turn
forward the LOCK-APPROVAL and update theirdir variables
according to the head of their queues until the LOCK-APPROVAL
reachesS5. WhenS5 receives the LOCK-APPROVAL at timet4,
it notices that the head of its queue is itself and thus can enter
the critical section to commit the arrival ofJ1. The commitment
phase is the same as that ofJ2. As a consequence, the concurrent
arrivals ofJ1 andJ2 are globally serialized in the order ofJ2 and
J1 with the consistent commitment times oft3 +∆t andt4 +∆t.
Therefore, the schedule can be updated in a globally consistent
way, assuring the conflict-free scheduling property.

For the complete and formal description of this distributed
schedule update procedure, the readers are referred to [16]. The
procedure inherits the proved properties of Raymond’s algorithm,
such as minimal message exchange for assuring serializability,
deadlock-freedom, no-starvation, and fault-tolerance.

D. Measurement Federation Issues across ISP Borders

Collecting measurement data within a single ISP domain is
not sufficient for distributed computing applications because they
often span network paths across multiple ISP domains. For
example, application service providers such as Vonage relyon
multiple ISPs for delivering word-wide voice over IP (VoIP)and
videoconferencing services. To serve their customers meeting the
service level agreements (SLAs), ISPs need to support inter-
domain measurements that could produce end-to-end Internet
measurements. For facilitating such inter-domain measurements,
“NMI federations” [17], [5] have emerged where multiple ISPs
agree upon a common measurement policy to cooperate with each
other.

This section discusses the inter-domain NMI federation issues
and explains how our scheduling framework can be incorporated
into the federation. For building an NMI federation, all the
participating ISPs should agree on the following: (1) sharing each
other’s measurement server topology, (2) bounding the amount of
measurement traffic (i.e., the MLA constraintψ), (3) authenticated
and secure access to measurement resources, and (4) sharing
collected measurement data.

First, the measurement server topology of an ISP can be se-
curely revealed only to other ISPs in the same federation using the

agreed authentication and encryption methods as will be discussed
later. Thus, every measurement server in the NMI federationcan
have the federation-wide view of the server topology and thus
can determine the schedule of measurement tasks even if they
span across multiple ISPs. Second, the agreed measurement traffic
bound, MLA constraintψ, can be enforced in our scheduling
algorithms as explained in Sections IV-A and IV-B and thus it
can be complied across multiple ISPs. Third, for the authenticated
and secure access to measurement resources across ISP borders,
all ISPs can use a pre-agreed authentication and encryptiontech-
niques. For example, upon arrival of a new measurement request,
they can use a centralized Kerberos [18] authentication server with
Data Encryption Standard or triple DES. This can verify thatthe
requesting domain belongs to the same NMI federation and also
prevent intruders from eavesdropping the request for deciphering
the authentication mechanism and impersonation as a memberof
the NMI federation. Finally, the collected measurement data can
be shared by multiple ISPs as needed by distributed computing
applications, using “Request/Response” schemas being developed
by the Global Grid Forum [17].

We envision that the growth of an NMI federation involves
mostly political hurdles rather than technical ones. Sincethe
application and ISP communities are realizing the importance
of NMI federation for inter-domain distributed computing,we
believe that all the political hurdles will be overcome resulting in
a world-wide NMI federation. Note that such efforts have been
already started by the communities such as Global Grid Forum,
Internet2 in USA, and DANTE in Europe [17], [5].

V. CASE STUDY WITH NWS (NETWORK WEATHER SERVICE)
FOR DISTRIBUTED COMPUTING

A. NWS Network Prediction

We now apply our measurement scheduling algorithms to the
widely-used Network Weather Service (NWS) [9] that can provide
network performance forecasts3. In this application, one challenge
is the gap between the original measurement time requirement
of NWS and the actual temporal behavior of our scheduling
algorithms. More specifically, NWS periodically issues measure-
ment requests expecting a periodic sampling of network status.
However, the scheduler cannot serve the requests exactly atthe
desired times due to resource conflicts with other measurement
requests. As such, any scheduler that tries to avoid conflicts,
inevitably creates a jitter in the inter-sampling times of network
status. This section presents a simple method for compensating
the inter-sampling jitter.

NWS relies on continuous and periodic sampling orPure
Periodic Sampling(PPS) of network status. It uses the periodically
sampled network status data to maintain the history of network
performance, which in turn is used to generate on-going and dy-
namic network performance forecasts. The forecast time window
is the same as the sampling period.

However, it is not always possible for the measurement
scheduling algorithm to provide pure-periodic network status data,
especially when multiple measurement tasks are running. This
can be explained by Figure 10 that shows an example conflict-
free schedule of two periodic measurement tasks that have a
conflict relation. We can note that the taskτ2 is scheduled
pure-periodically with constant inter-sampling times. However,

3NWS uses periodically measured network status and forecasts the network
performance. Due to its ability of forecasting network performance, NWS has
been adopted by a number of networked job schedulers such as AppLes [19],
Legion [20], Globus/Nexus [21].



IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. X, XXX 200X 8

0 10 20 30 40 50 60 70 80 90 110 120100

τ1

τ2

τ11 τ12 τ13 τ14

τ21 τ22 τ23

Fig. 10. Jitter of inter-sampling time points of network status

APS

TPS

(i − 2) · p (i − 1) · p i · p

(ti−1, yi−1)

(ti, yi)

(ti+1, yi+1)

((i − 1) · p, ŷi)

(i · p, ŷi+1)

M
ea

su
re

d
va

lu
ey

Time

Fig. 11. APS transformation to TPS

the inter-sampling times of taskτ1 vary for every instance. To
avoid conflict of multiple concurrent tasks, the actual scheduling
time points are inevitably deviated from the periodic release time
points by any conflict-free scheduling algorithm. Our EDF-CE
also produces such inter-sampling time jitter since it is designed to
guarantee the periodic deadlines and not pure periodic execution
of jobs. In fact, with our EDF-CE, the inter-sampling jitterof task
τi can vary fromei (when a job instance is scheduled just before
its deadline and the next one is scheduled at the release time) to
2pi−ei (when a job instance is scheduled at the release time and
the next one is scheduled just before the deadline).

Although our EDF-CE causes inter-sampling jitter between
two consecutive jobs, it bounds the jitter by meeting the end-
of-period deadlines. Therefore, it can still be used for NWS
with simple interpolations of collected network status data. The
interpolation is transforming the actual measured data to pure-
periodic data using piece-wise linear interpolation. To explain
this, let us consider Figure 11. In the figure,(ti−1, yi−1), (ti, yi),
and (ti+1, yi+1) show the sequence of the(i − 1)-th, i-th, and
(i + 1)-th actual periodic sampling(APS) whose inter-sampling
time is not always the same as the periodp. To transform the APS
sequence to a pure-periodic sampling sequence, which we call
Transformed Periodic Sampling(TPS), we can draw piece-wise
lines between pairs of two APS points . For example, we can draw
a line between(ti−1, yi−1) and (ti, yi) as shown in Figure 11.
With this line, we can estimate the measurement valueŷi at the
pure-periodici-th sampling time, i.e.,(i − 1) · p. Specifically,ŷi

is given as follows:

ŷi = yi +
yi+1 − yi

ti+1 − ti
((i − 1) · p − ti).

Thus, the APS data(ti, yi) with inter-sampling jitter can be
transformed to the pure-periodic TPS data((i − 1) · p, ŷi) as
shown in Figure 11. Similarly,(ti+1, yi+1) can be transformed
to (i · p, ŷi+1). Now, the NWS can use the TPS data rather than
the original measured data to provide the network performance
forecast. With this simple interpolation method, we will show
in Section VI-C that our EDF-CE can work well with NWS to
produce accurate forecasts.

B. Use of NWS for Distributed Computing

Due it its ability to forecast the network status, NWS can
be used for a number of distributed computing applications that
rely on networked computational resources. In this section, we
sketch the scenarios where the NWS based on our conflict-
free measurements can help two typical examples of distributed
computing, i.e., Grid computing and videoconferencing.

In Grid computing, users often transfer computational jobs
involving large data sets (sometimes even on the scale of tera
bytes) to remote computing sites [22]. If proper network paths
are not selected, then jobs that traverse problematic pathscould
hold up the speedy completion of other queued jobs that traverse
problem-free paths and thus significantly degrade the overall
efficiency of Grid computing. This problem can be avoided
by using the NWS. It can accurately monitor and predict the
network status by using the conflict-free (and so no-misleading)
measurement data. The job scheduler of Grid computing can use
such network status data to select the computing sites and network
paths in a way that ensures the optimal efficiency of the overall
computing. In addition, the ability of network status prediction
can allow the job scheduler to dynamically change the network
path selections before severe performance degradation happens.

In videoconferencing, interactive sessions involving three or
more participants are established using call-admission controllers
that manage Multi-point Control Units (MCUs). MCUs combine
the admitted voice and video streams from participants and
generate a single conference stream that is multicast to allthe
participants. If a call admission controller selects problematic
network paths between the participants and MCUs, the perceptual
quality of the conference stream could be seriously affected by
impairments such as video-frame freezing, audio drop-outs, and
even call-disconnects. Using the NWS, such a problem can be
avoided. The call admission controllers can consult the NWS
to figure out the network paths that can satisfy the application
QoS requirements. In addition, the network status forecasts from
NWS can also be used to monitor whether the current selection
will experience problems due to the paths that may soon degrade
the application QoS severely. In such cases, the call admission
controllers can dynamically change to alternate network paths that
are identified to satisfy QoS requirements for the next forecasting
period.

The selected paths in both cases of Grid computing and
videoconferencing can be enforced in Internet by using MPLS
explicit routing or by exploiting path diversity based on multi-
homing or overlay networks [23], [24].

VI. EXPERIMENTAL RESULTS

In this section, we evaluate the performance of our measure-
ment scheduling algorithms. We first perform simulations with
synthetic measurement tasks to show the maximum schedulability
by the EDF-CE algorithm and the average response times of
on-demand requests by the recursive pushing algorithm. Then,
we present performance evaluation results on an actual Internet2
testbed. Finally, we present the case study results of applying our
EDF-CE to NWS.

A. Performance Evaluation Results using Synthetic Tasks

Our synthetic task set is comprised of four periodic active
measurement tasksτ1, τ2, τ3 andτ4. The periodpi of each taskτi

is randomly generated from [1000 sec, 10000 sec]. The execution
time ei of each taskτi is randomly generated from [100 sec,



IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. X, XXX 200X 9

Fig. 12. Maximum schedulable utilization by three scheduling algorithms

Fig. 13. Effect of MLA ψ and conflict factor to EDF-CE

999 sec]. Since the measurement topology and inter-task conflict
relations can be represented by a task conflict graph, we conduct
this experiment as changing only the task conflict graph. The
task conflict graph of the four tasks is randomly created using a
parameter called aconflict factor. The conflict factor represents
the probability that there is a conflict edge between any two tasks.
Therefore, when the conflict factor is 1, the task conflict graph
is fully connected. If the conflict factor is 0, there is no edge
between tasks.

For each sample task set and task conflict graph, we use the
“maximum schedulable utilization”

P4

i=1 ei/pi as the perfor-
mance metric. We determine the maximum schedulable utilization
by gradually increasing execution timesei until the scheduling
algorithms fail to construct a feasible schedule.

We compare three scheduling algorithms:

• No-orchestration that schedules measurement jobs at their
release times without considering measurement conflicts,

• EDF that schedules only one measurement job at a time
using the non-preemptive EDF algorithm just like a single
processor EDF scheduling, and

• EDF-CE that is proposed in this paper.

Figure 12 shows the maximum schedulable utilization as in-
creasing the conflict factor. Here, we assume a large MLAψ, say
50 Mbps, and thus avoid any MLA bottlenecks when finding the
schedule. Each plotted point in the figure is the average of 1000
random sample task sets. EDF’s maximum schedulable utilization
is constantly bounded under 100% regardless of the conflict factor
since it does not allow concurrent execution even when possible.
On the other hand, our EDF-CE algorithm can maximally utilize
the concurrent execution whenever possible. When the conflict
factor is zero, EDF-CE allows concurrent execution of all four

tasks. This is similar to scheduling the four tasks on four inde-
pendent processors. Thus, the maximum schedulable utilization
reaches up to 400%. As the conflict factor increases, the maximum
schedulable utilization gradually decreases. When the conflict
factor is 1, i.e., when all four tasks conflict with each other,
EDF-CE automatically degenerates to the single processor EDF
and hence gives the maximum schedulable utilization of 100%.
The result shows that EDF-CE is leveraging the “maximal but
only possible” concurrent execution by explicitly considering the
conflict dependency among tasks. The no-orchestration approach
always gives the maximum schedulable utilization of 400% since
all four tasks can be concurrently executed ignoring the conflict
dependency. This, however, causes many conflicts as will be
shown in Section VI-B resulting in many misleading reports of
actual network performance.

Figure 13 illustrates how the maximum schedulable utilization
of EDF-CE is bounded by the MLA constraintψ and conflict
factor. As expected, a higher value ofψ accommodates a larger
number of concurrent jobs and hence produces a higher maxi-
mum schedulable utilization. For a givenψ value, the maximum
schedulable utilization is constant up to a certain point ofthe
conflict factor and then starts decreasing. Such a trend explains
thatψ is the bottleneck when the conflict factor is small, whereas
the conflict dependency becomes the bottleneck when the conflict
factor is large.

To study the performance of the “recursive push” algorithm for
handling on-demand measurement requests, we simulate random
arrivals of on-demand jobs and schedule them over the offline
EDF-CE schedule. The offline specified task set consists of four
periodic tasks as before, and their execution times and periods are
randomly generated from [1 minute, 10 minutes] and [20 minutes,
200 minutes], respectively. The execution times and inter arrival
times of on-demand jobs are also randomly generated from [1
minute, 10 minutes] and [20 minutes, 200 minutes], respectively.
The performance metric is the average of the response times for
1000 on-demand jobs. We compare our recursive push algorithm
with a background approach that schedules an on-demand job in
the earliest gap present in the offline EDF-CE schedule within
which the on-demand job can execute to completion. Figure 14
shows that our recursive push algorithm can significantly improve
the responsiveness for on-demand measurement requests. Note
that the average response time in both the background and
recursive push cases increases as the conflict factor increases. This
is because a higher conflict dependency among tasks reduces the
concurrent execution of jobs and thus reduces the gaps available
to schedule the on-demand jobs.

To estimate the overhead of online scheduling, we measure
the algorithm running time for each on-demand job on 2.4 GHz
Pentium 4 Linux PC. Figure 15 shows the average times as
increasing the number of periodic tasks, while fixing the conflict
factor as 0.8. Even for a large number of periodic tasks with ahigh
conflict factor, our recursive push algorithm can find the slack and
calculate the updated schedule within tens of milliseconds. This
is a negligible delay comparing with typical measurement task
execution times in the order of minutes.

In order to study the overhead of the distributed implementation
of the scheduling algorithms, we simulate both centralizedand
distributed implementations of the recursive push algorithm in
a large scale network. For the network topology, we use the
Waxman topology with 1000 nodes produced by the BRITE
tool [25]. From the topology of 1000 nodes, we randomly select
N nodes as the measurement servers creating a “measurement
topology” withN measurement servers over the network topology



IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. X, XXX 200X 10

Fig. 14. Average response time of on-demand jobs

Fig. 15. Online schedule overhead for on-demand jobs

with 1000 nodes. We consider three differentNs: 100, 200,
and 300. These choices represent NMIs with a reasonably large
number of servers noting that the largest NMI deployment today,
i.e., the NLANR AMP project [3] has around 150 measurement
servers deployed all over the world. On top of the measurement
topology, we use a synthetic task set with 100 offline periodic
measurement tasks. The periodpi and the execution timeei

of each taskτi are randomly generated from [20 minutes, 200
minutes] and [1 minute, 10 minutes], respectively. Then, the
execution times of all 100 tasks are scaled such that the total
utilization

P100

i=1 ei/pi become 50%. Each task is assigned with
randomly selectedsrc anddst servers. With this offline periodic
task set, we generate the offline schedule using the EDF-CE
algorithm. Given the offline schedule, we simulate the random
arrival of 1000 on-demand jobs with random execution times
following the exponential distribution with the average 5 minutes.
We conduct the simulation as we increase the average arrival
rate from 10 jobs/hour to 150 jobs/hour following the Poisson
distribution. Each on-demand job is assigned with randomly
selectedsrc anddst servers. In the following figures, we report
the average of 100 simulation runs.

Figure 16 compares the average response times of on-demand
jobs by the centralized and distributed implementations ofthe
recursive-push algorithm. The centralized and distributed im-
plementations show almost the same response times. This is
because the total message passing delay to transfer the lockin
the distributed implementation is at most 2 seconds even in a
large scale measurement topology with 300 servers as shown in
Figure 17. Also, such delay does not increase with the increase of

Fig. 16. Response time comparison of the centralized and distributed
implementations

Fig. 17. Implementation overhead comparison of the centralized and
distributed implementations

the arrival rate. This is due to the message minimization capability
of Raymond’s algorithm as the number of requests increases [16].
Another interesting observation in Figure 16 is that the response
time is smaller when the number of servers is larger. This is
because the on-demand job workload is scattered over a larger
number of servers and hence the per-server workload is smaller.

B. Performance Evaluation Results on an Internet2 Testbed

We have actually implemented and deployed our scheduling
algorithms in an NMI that is being used to monitor network
paths on the Internet2 Abilene network backbone. The scheduling
framework consists of a “Scripting Language Interface” anda
central regulator as shown in Figure 18. The scripting language
interface provides a generic and automated way to input mea-
surement specifications such as measurement server topology,
periodic measurement tasks, and MLAs. These specifications
are interpreted by the central regulator to construct schedule
timetables for the measurement servers. The constructed schedule
timetables are transferred to the corresponding servers toinitiate
the measurement jobs at the planned times.

Our Internet2 testbed has five sites each of which is equipped
with a measurement server as shown in Figure 19(a). To collect
the actual measurement data, we run five periodic measurement
tasks as shown Figure 19(b). The resulting task conflict graph is
shown in Figure 19(c).



IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. X, XXX 200X 11

Fig. 18. Structure of Measurement Scheduling Framework

Fig. 19. Internet2 Testbed Setup

Figure 20 shows the H.323 Beacon MOS reports4 measured
between Site-3 and Site-4 by taskτ2. To compare EDF-CE and
No-Orchestration, we pick the same 12-hour time frames in two
consecutive days. For the 12-hour time frame of the first day,
we use No-Orchestration method to run all five measurement
tasks in Figure 19(b) and collected the MOS reports fromτ2.
For the 12-hour time frame of the second day, we use EDF-CE
and collect the same reports. From these two experiments, we
can observe that the proposed EDF-CE guarantees zero conflict
while No-Orchestration causes 50% instances ofτ2 to overlap
with other tasks. All the overlaps in the No-Orchestration schedule
are indeed conflicts since all the tools used in Figure 19(b) are
CPU intensive and channel intensive. In terms of MOS accuracy,
however, we are not sure which curve is better reflecting the
reality of the network status, since we do not know the “true-
real” network status. In order to have a good representationof
the reality of the network status between Site-3 and Site-4,we
run only τ2 over a week long period. The results are shown in
Figure 21. From the figure, we can affirm that MOS fluctuation
between 4.31 and 4.42 is natural in reality between Site-3 and
Site-4. The MOS values in Figure 20 collected using EDF-CE
well match the representation of the reality in Figure 21. In
contrast, the MOS reports by the no-orchestration method in
Figure 20 show much larger fluctuation, which seems abnormal
comparing with Figure 21. We can conclude that these abnormal
fluctuations are due to 50% instances ofτ2 conflicting with other
tasks.

Although we do not present the data for Iperf ofτ1, τ3, τ5 and
Pathload ofτ4 due to the page limit, we observed the similar
measurement anomalies in No-Orchestration but not in EDF-
CE. From these observations, we can justify the importance of
measurement orchestration for the correct estimation of network
status.

Fig. 20. H.323 Beacon MOS measurements between Site-3 and Site-4

Fig. 21. H.323 Beacon MOS measurements over a week period between
Site-3 and Site-4

C. Case Study Results with NWS

In this section, we show how well our EDF-CE can work in
combination with NWS. For this purpose, we use actual trace
data obtained from NWS measurements for a path traversing a T1
connection with a total bandwidth 1.5 Mbps [26]. The trace data
corresponds to “hourly” samples of available bandwidth on the T1
line over a two-day period. We assume that the trace data reflects
the “actual” network performance trend on the path. Using this
trace data, we generate two sample sequences, one representing
the ideal pure-periodic sampling (PPS) with a period of 2 hours,
and another one that corresponds to actual sampling (APS) by
EDF-CE. The 2-hour-based PPS is obtained by considering every
other sample in the trace data assuming that no other monitoring
tasks are present. This 2-hour-based PPS is the ideal measurement
sequence expected by NWS for 2-hour look-ahead forecasts. The

4MOS measurements reported by the H.323 Beacon are based on the E-
Model [2], which is a computational model standardized by ITU-T to estimate
the perceptual user quality for VoIP. The MOS values are reported on a quality
scale of 1 to 5; [1, 3) range being poor, [3, 4) range being acceptable and [4,
5] range being good. MOS values close to 4.41 are desirable for high-quality
VoIP.

Fig. 22. Four task example for determining inter-sampling timesof APS
data



IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. X, XXX 200X 12

Fig. 23. Comparison of Forecasts of PPS and APS

Fig. 24. Comparison of Forecasts of PPS and TPS

actual measurement sequence, APS, however, inevitably deviates
from the PPS due to scheduling of conflicting tasks. To model
the APS, we simulate the EDF-CE with four measurement tasks
in Figure 22. Note that taskτ1 serves NWS by providing 2-
hour based sampling of available bandwidth. This simulation
provides the inter-sampling time distribution ofτ1, which is used
to select the samples from the trace data. The selected samples
approximately represent the actual sequence of samples obtained
by τ1 as scheduled by EDF-CE in the presence of three other
tasks5.

Figure 23 shows the reality of the available bandwidth (i.e.,
one hour based trace data), the NWS forecasted bandwidth using
PPS, and the same usingAPS. The NWS forecasting using the
ideal PPS closely match the actual trend. However, the NWS
forecasting usingAPS has non-negligible differences from the
reality. This is because of inter-sampling time jitter caused by
EDF-CE. This problem can be fixed by a simple transformation
of sampled data as described in Section V. Figure 24 shows that
the NWS forecasting using the transformed samples denoted by
TPS can be very close to the ideal forecasting byPPS.

VII. C ONCLUSION AND FUTURE WORK

In this paper, we identify the measurement conflict problem,
which results in misleading measurements of network statuswhen
multiple conflicting measurement tools are executing at thesame

5Due to the one hour based granularity of the original trace data, the
sequence of selected samples is only an approximation with quantization
errors up to one hour. However, it is acceptable in terms of showing how
the aforementioned simple interpolation can resolve the inter-sampling time
jitter caused by EDF-CE, which ranges from 0 to 4 hours.

time on the same server or path. From the observation, we
formulate the measurement scheduling problem as a real-time
scheduling problem.

For the optimal schedulability of periodic measurement tasks,
we use the EDF principle, which has been proven to be optimal
in single processor preemptive scheduling and perform well
in general settings. Our significant enhancement is to leverage
concurrent execution, which clearly differentiates the measure-
ment scheduling problem from the classical real-time scheduling
problems. Our enhanced EDF algorithm called EDF-CE allows
concurrent execution of multiple measurement jobs not onlyon
the isolated servers and paths but also on the same server and
path, as long as they do not conflict—no misleading reports. This
significantly improves the schedulability and thus allows us to
run measurements more frequently or saves significant time for
on-demand requests.

We also propose an online scheduling algorithm to serve on-
demand measurement requests as early as possible. The online
algorithm can steal the maximum slack without violating any
periodic deadlines and thus can almost immediately schedule
the on-demand requests. Therefore, the response times of on-
demand requests can be significantly reduced compared to their
background processing.

Our proposed scheduling algorithms have actually been im-
plemented and deployed on the Internet2 Abilene network. The
actual experimental results demonstrate the pertinence and trust-
worthiness of our proposed scheduling algorithms.

ACKNOWLEDGMENT

This work has been supported in part by Research Settlement
Fund for the new faculty of SNU, The Ohio Board of Regents
and the American Distance Education Consortium.

REFERENCES

[1] P. Calyam, C.-G.Lee, P. K. Arava, and D. Krymskiy. Enhanced
EDF Scheduling Algorithms for Orchestrating Network-wide Active
Measurements. InProc. of IEEE RTSS, 2005.

[2] P. Calyam, W. Mandrawa, M. Sridharan, A. Khan, and P. Schopis.
H.323 Beacon: An H.323 Application related End-to-end Performance
Troubleshooting Tool. InProc. of ACM SIGCOMM NetTs, 2004.

[3] T. McGregor, H.-W. Braun, and J. Brown. The NLANR Network
Analysis Infrastructure. InIEEE Communications Magazine, 2000.

[4] P. Calyam, D. Krymskiy, M. Sridharan, and P. Schopis. TBI: End-to-end
Network Performance Measurement Testbed for Empirical Bottleneck
Detection. InProc. of IEEE TRIDENTCOM, 2005.

[5] E. Boyd, J. Boote, S. Shalunov, and M. Zekauskas. The Internet2 E2E
piPES Project: An Interoperable Federation of Measurement Domains
for Performance Debugging. Technical report, Internet2 Technical
Report, 2004.

[6] A. Tirumala, L. Cottrell, and T. Dunigan. Measuring end-to-end
Bandwidth with Iperf using Web100. InProc. of Passive and Active
Measurement Workshop, 2003.

[7] A. Downey. Using Pathchar to estimate Internet link characteristics. In
Proc. of ACM SIGCOMM, 1999.

[8] C. Dovrolis, P. Ramanathan, and D. Moore. Packet Dispersion Tech-
niques and Capacity Estimation.IEEE/ACM Transactions on Networking
Journal, 2004.

[9] R. Wolski, N. Spring, and J. Hayes. The Network Weather Service: A
Distributed Resource Performance Forecasting Service for Metacomput-
ing. Future Generation Computer Systems, 1999.

[10] J. Liu. Real-Time Systems. Publication of Prentice Hall, 2000.
[11] S. Kalidindi and M. Zekauskas. Surveyor: An Infrastructure for Internet

Performance Measurements. InProc. of INET, 1999.
[12] M. Alves, L. Corsello, D. Karrenberg, C. Ogut, M. Santcroos, R. Sojka,

H. Uijterwaak, and R. Wilhelm. New Measurements with the RIPE
NCC Test Traffic Measurements Setup. InProc. of Passive and Active
Measurements Workshop, 2002.



IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. X, XXX 200X 13

[13] B. Gaidioz, R. Wolski, and B. Tourancheau. Synchronizing Network
Probes to avoid Measurement Intrusiveness with the Network Weather
Service. InProc. of IEEE High-performance Distributed Computing
Conference, 2000.

[14] H. Wang, D. Zhang, and K. Shin. Change-Point Monitoringfor
Detection of DoS Attacks. IEEE Transactions on Dependable and
Secure Computing, 2004.

[15] P. Calyam, C.-G. Lee, P. K. Arava, D. Krymskiy, and D. Lee. On-
TimeMeasure: A Scalable Framework for Scheduling Active Measure-
ments. InProc. of IEEE E2EMON, 2005.

[16] K. Raymond. A Tree-based Algorithm for Distributed Mutual Exclusion.
ACM Transactions on Computer Systems, 1989.

[17] GGF NMWG Request/Response Schema, 2006.
URL:nmwg.internet2.edu.

[18] J. Steiner, C. Neuman, and J. Schiller. Kerberos: An authentication
service for open network systems. InProc. of USENIX, 1998.

[19] F. Berman and R. Wolski. Scheduling from the Perspectiveof the
Application. In Proc. of High-Performance Distributed Computing
Conference, 1996.

[20] A. Grimshaw, W. Wulf, J. French, A. Weaver, and P. Reynolds. Legion:
The Next Logical Step Towards a Nationwide Virtual Computer.Tech-
nical report, University of Virginia Technical Report CS-94-21, 1994.

[21] T. Defanti, I. Foster, M. Papka, R. Stevens, and T. Kuhfuss. Overview
of the I-WAY: Wide Area Visual Supercomputing.International Journal
of Supercomputer Applications, 1996.

[22] D. Reed and C. Mendes. Intelligent Monitoring for Adaptation in Grid
Applications. InProc. of the IEEE, 2005.

[23] R. Prasad, M. Jain, and C. Dovrolis. Effects of Interrupt Coalescence on
Network Measurements. InProc. of Passive and Active Measurement
Workshop, 2004.

[24] J. Han and F. Jahanian. Impact of Path Diversity on Multi-homed and
Overlay Networks. InProc. of IEEE DSN, 2004.

[25] Boston University. BRITE: Representative Internet Topology Generator,
2006. http://www.cs.bu.edu/brite.

[26] Middleware Initiative. NWS User’s Guide, 2006.
http://archive.nsf-middleware.org/documentation/NMI-
R5/0/gridscenter/NWS/usersguide.htm.

Prasad Calyamreceived the BS degree in Electrical
and Electronics Engineering from Bangalore Uni-
versity, India, and the MS degree in Electrical and
Computer Engineering from The Ohio State Uni-
versity, in 1999 and 2002, respectively. Currently,
he is a Ph.D. Candidate in Electrical and Computer
Engineering at The Ohio State University. He is also
currently a Senior Systems Developer/Engineer at
OARnet, a division of the Ohio Supercomputer Cen-
ter. His current research interests include network
management, active/passive network measurements,

voice and video over IP and network security. He is a student member of the
IEEE.

Chang-Gun Lee received the BS, MS and Ph.D.
degrees in Computer Engineering from Seoul Na-
tional University, Korea, in 1991, 1993 and 1998,
respectively. He is currently an Assistant Professor
in the School of Computer Science and Engineer-
ing, Seoul National University, Korea. Previously,
he was an Assistant Professor in the Department
of Electrical and Computer Engineering, The Ohio
State University, Columbus from 2002 to 2006, a
Research Scientist in the Department of Computer
Science, University of Illinois at Urbana-Champaign

from 2000 to 2002, and a Research Engineer in the Advanced Telecomm.
Research Lab., LG Information and Communications, Ltd. from 1998 to 2000.
His current research interests include real-time systems, complex embedded
systems, ubiquitous systems, QoS management, wireless ad-hoc networks, and
flash memory systems. Dr. Lee is a member of the IEEE Computer Society.

Eylem Ekici received his BS and MS degrees in
Computer Engineering from Bogazici University,
Istanbul, Turkey, in 1997 and 1998, respectively. He
received his Ph.D. degree in Electrical and Computer
Engineering from Georgia Institute of Technology,
Atlanta, GA, in 2002. Currently, he is an Assis-
tant Professor in the Department of Electrical and
Computer Engineering of The Ohio State University,
Columbus, OH. Dr. Ekici’s current research interests
include wireless sensor networks, vehicular com-
munication systems, and next generation wireless

systems, with a focus on routing and medium access control protocols,
resource management, and analysis of network architectures and protocols.
He is an associate editor of Computer Networks Journal (Elsevier) and ACM
Mobile Computing and Communications Review. He has also servedas the
TPC co-chair of IFIP/TC6 Networking 2007 Conference.

Mark Haffner received the BS degree in Electrical
Engineering from University of Cincinnati in 2006.
Currently, he is pursuing an MS degree in Electri-
cal and Computer Engineering at The Ohio State
University. His current research interests include
active/passive network measurements, RF circuit de-
sign and software-defined radios. He is a student
member of the IEEE.

Nathan Howes is pursuing a BS degree in Com-
puter Science and Engineering at The Ohio State
University. His current research interests include
active/passive network measurements and network
security. He is a student member of the IEEE.


