
OnTimeMeasure: A Scalable Framework for
Scheduling Active Measurements

Prasad Calyam, Chang-Gun Lee, Phani Kumar Arava, Dima Krymskiy, David Lee
The Ohio State University, Columbus, Ohio 43210.

pcalyam@oar.net,cglee@ece.osu.edu,{arava,krymskiy,lee}@cse.ohio-state.edu

Abstract
In order to satisfy and maintain Service Level Agreements (SLAs) which demand high
network availability and good network health, ISPs have started instrumenting their net-
works with Network Measurement Infrastructures (NMIs) that are composed of dedicated
measurement servers. Active measurements are frequently used in NMIs to regularly
monitor network health and analyze the experience of end-user application traffic travers-
ing the network. However, active measurements initiated by measurement servers need
to be regulated. Unregulated active measurement traffic can cause an unpredictable neg-
ative impact on the actual application traffic. Also, running simultaneous conflicting ac-
tive measurements on measurement servers could result in misleading reports of network
performance. In this paper, we describe our active measurements scheduling framework
called ”OnTimeMeasure” that allows ISPs to regulate the amount of active measurement
traffic injected into the network and also prevents conflicts in ongoing active measure-
ments between measurement servers. OnTimeMeasure provides a simple scripting lan-
guage interface to specify various measurement requirements such as physical topology
of measurement server clusters, periodicity of the measurements, and properties of mea-
surement tools. For a given measurement requirements script, OnTimeMeasure uses an
efficient heuristic bin-packing algorithm to generate measurement timetables for orches-
trating active measurements for a network involving multiple measurement servers, each
hosting multiple measurement tools.

Keywords
Active Measurements, Scheduling, Heuristic Bin-packing, Network Monitoring

1. Introduction

Since some of the early and basic network protocols did not address many essential re-
quirements for network measurements in their own specifications, it has become neces-
sary to have Network Measurement Infrastructures (NMIs) in today’s networks. NMIs are
used to monitor Internet traffic characteristics on an ongoing basis so as to understand the
interactions and performance issues of various Internet protocols. NMIs support active
measurement data collection, which requires injecting test packets between the various
network paths being monitored. The active measurement data obtained provide network
related information such as: topology, available or bottleneck bandwidth, packet one-way
delay, round-trip delay, loss, jitter and reordering, which can be analyzed to report levels
of end-to-end network performance and to identify end-to-end performance bottlenecks.



Figure 1: Iperf test results with and without mutual exclusion of measurements

Traditionally, active measurement tools such as Ping and Traceroute were used to de-
termine round-trip delays and network path topology by using ICMP packets. Recently,
active measurement tools such as H.323 Beacon [1], Multicast Beacon [2] and BGP Bea-
con [3] have been developed that emulate application-specific traffic and use the result-
ing measurement of the emulated traffic to estimate network health from the application
perspective. Tools such as Pathchar [4] and Pathrate [5] have also been developed to de-
termine available bandwidth and bandwidth capacity respectively in network paths using
sophisticated packet probing techniques. Many of the above active measurement tools and
other tools such as OWAMP [6], Iperf [7] and ABwE [8] have been integrated into NMIs
[9] [10] [11] [12] used by ISPs and researchers to periodically perform active measure-
ments between a set of measurement servers located at strategic points in both academic
and commercial networks.

Since obtaining active measurement data is at the expense of consuming network band-
width which might be required by actual application traffic, active measurements need to
be regulated in NMIs. Also, the methodology used for performing periodic active mea-
surements needs to be addressed carefully. If proper care is not taken, the results of active
measurements might falsely indicate the existence of end-to-end performance problems in
the network when actually the results are influenced by the error-prone procedures used to
collect the active measurement data. The error-prone procedures involve system and net-
work resource contention problems which arise due to lack of mutual exclusion of active
measurements that are CPU and channel intensive.

Figure 1 illustrates the effect of scheduling Iperf measurements back-to-back and con-
currently in an isolated LAN Testbed between two measurement servers with WAN em-
ulation by NISTnet [13] in the intermediate path. To obtain realistic results, traffic of an
H.323 Videoconferencing session at 768Kbps dialing speed was used as cross traffic in
the testbed while the active measurements were being initiated using the Iperf tool. It
can be observed in the case of concurrently scheduling Iperf measurements (shown in the
right-half of Figure 1), the lack of mutual exclusion causes incorrect representation of
the intermediate network path health in comparison to the network path health correctly



indicated by the Iperf measurements scheduled in a back-to-back fashion (shown in the
left-half of Figure 1). In [14], a similar set of observations have been presented to demon-
strate the incorrect reporting of bandwidth measurements when measurement probes are
intentionally made to collide with each other. The above reasoning for the need for mutual
exclusion of measurements can also be extended in cases of other tools such as the H.323
Beacon and Pathchar.

In addition to the need for ”correctness” as described in the previous paragraph, ”effi-
ciency” of scheduling active measurements also needs to be addressed in NMIs. Efficiency
refers to the design goal of a scheduler to minimize the total schedule time for facilitating
fast repetition of the measurement schedules. A faster repetition of measurement sched-
ules permits more frequent probing to obtain network health information for any given
network path in an NMI. A higher frequency of probing leads to a better understanding
of the actual performance of the network path.

In this paper we propose a novel scheduling framework that not only regulates but at
the same time enables correct and efficient scheduling of active measurements initiated in
NMIs. The proposed scheduling framework called ”OnTimeMeasure”, which has actually
been implemented in the NMI we developed to monitor our ”The Third Frontier Network”
(OARnet Network Backbone), consists of a scripting language interface and a scheduling
engine. The scripting language interface provides a generic way to specify various mea-
surement requirements in a form the scheduler engine can comprehend. For a given set of
measurement requirements, the scheduling engine solves the scheduling problem using
a heuristic bin packing algorithm and automatically generates measurements timetables
for a specified number of measurement servers and measurement tools. The measurement
timetables are used to activate jobs that do not misreport active measurement results while
still minimizing the total schedule time; i.e., maximizing the measurement repetition fre-
quency.

The remainder of the paper is organized as follows: Section 2 details the related work
on active measurement scheduling, Section 3 discusses the various scheduling require-
ments for active measurements in NMIs, Section 4 describes the OnTimeMeasure frame-
work, Section 5 presents the performance evaluation of the heuristic bin packing algo-
rithm used in OnTimeMeasure in comparison with the adhoc and round-robin scheduling
schemes and Section 6 concludes the paper.

2. Related Work

As described in Section 1, NMIs need to use network measurement ”schedulers” while
setting up periodic or sporadic active measurements to regulate active measurements and
to efficiently avoid pitfalls caused by resource contention among multiple simultane-
ous measurements. NMIs developed to date, however, have not paid much attention to
the problem of active measurements scheduling. Many of the todays NMIs use adhoc
or round-robin cron job scheduling. In adhoc scheduling, the cron jobs that initiate ac-
tive measurements are configured without any considerations for avoiding collisions of
measurements between multiple measurement servers. This approach results in erroneous
measurement results that do not accurately reflect the network conditions. NMIs which



are more advanced, use round-robin scheduling in view of avoiding collisions in initiating
active measurements. This approach is not scalable in cases where the number of mea-
surement servers in the NMI increases over time. NMIs such as [9] use resource broker
scheduling for every active measurement tool on a measurement server. Such a solution
again fails to scale in terms of optimum schedulability of measurements as the number of
measurement tools and measurement servers increase.

NMIs used in applications such as Network Weather Service (NWS) [15] use token-
passing mechanisms for active measurements scheduling. Since NWS utilize active mea-
surements to forecast network performance using time-series models, the token passing
mechanisms are required to maintain consistency in periodicity of active measurements in
addition to ensuring mutual exclusion of measurements between multiple measurement
servers; only a server in possession of a token is permitted to initiate measurements to
all the other measurement servers in the NMI. Such token-passing schemes are better
in terms of scalability in comparison with the round-robin and resource broker schemes
when the number of measurement servers increase. However, the token-passing schemes
are not scalable and can become complex and unreliable, when there are multiple tools
on each measurement server and when each of these tools needs to be synchronized using
tokens with multiple measurement tools of other measurement servers.

3. Scheduling Requirements for Active Measurements

In addition to the consistency in periodicity and mutual exclusion of measurements as
required in applications such as NWS, there are many other requirements that need to be
considered while designing measurement schedulers. The following subsections describe
the requirements, which have not been well-addressed and in some cases not-addressed
at all, by the existing scheduling schemes mentioned in Section 2.

3.1 Frequency of Scheduled Measurements

In order to be able to forecast network health or to capture significant network health
disorder events or to regulate the amount of active measurements in the network, a cer-
tain frequency of an active measurement task may need to be set between measurement
servers. E.g. a Ping test may be required to run once every 5 minutes whereas an Iperf test
may be required to run once every hour. Hence, the scheduler must schedule various mea-
surements such that a requirement of fixed periodicity of active measurements is satisfied
between a set of measurement servers

3.2 On-demand tests Scheduling

In addition to the regularly scheduled tests in the network, there may be times when cus-
tomized on-demand tests might need to be initiated between certain measurement servers
without disrupting the regularly scheduled tests. For example, if tests of H.323 Beacon
using G.711 codec have been setup as regularly scheduled tests between two measure-
ment servers, a certain authorized network engineer might need to initiate a specialized
test of the H.323 Beacon with G.723 codec between the same two measurement servers.
Such sporadic active measurement requests may need to be handled by the scheduler to



Figure 2: Measurement Cluster Topologies- (a) Full-Mesh (b) Tree (c) Hybrid

make online scheduling decisions that affect the overall measurement schedule of the
measurement servers.

3.3 Measurement-Cluster Topology based Scheduling

For the target network that needs to be monitored, we can specify strategic measurement
sites forming different measurement-cluster topologies such as full-mesh, tree and hybrid
topologies. Figures 2(a) - 2(c) show the full-mesh, tree and hybrid measurement cluster
topologies respectively. A full-mesh topology involves testing from a measurement server
at a site to every other measurement server at other remote sites; a tree topology involves
testing between measurement servers in neighboring sites only and a hybrid topology
involves supporting subsets of measurement servers that need full-mesh and tree topology
type measurements. The topology specification determines the set of measurements that
the measurement scheduler has to schedule. Consequently, the scheduling mechanism
needs to be designed so as to accommodate any generic specification of measurement-
cluster topology.

3.4 Adherence to Measurement Level Agreements

Since identifying end-to-end performance bottlenecks could involve analyzing data along
network paths of multiple ISPs, we can envisage ”measurement federations” in which
many ISPs participate in inter-domain measurements based on some Measurement Level
Agreements (MLAs) for reaping the mutual benefits of performing end-to-end path mea-
surements. MLAs could specify that only a certain percentage (1 - 5) % or only a certain
number of bits per second (1-2) Mbps of the network bandwidth in ISP backbones could
be used for measurement traffic that can ensure that actual application traffic is not seri-
ously affected by measurement traffic ∗. Thus, when active measurements in a network or
between networks are required to adhere to MLAs, a scheduler must be able to accord-
ingly generate measurement schedules.

∗Since most active measurement tools have options to specify packet sizes and bandwidth usage of a measure-
ment test, simple calculations can be used to determine how much of a network’s bandwidth will be used by a
given set of active measurements, over a certain period of time.



4. OnTimeMeasure Framework

In this section, we describe our active measurements scheduling framework, which we
call ”OnTimeMeasure” that can systematically and more efficiently address the various
scheduling requirements discussed in Section 3, in comparison to other existing active
measurements scheduling schemes.

4.1 Heuristic Bin Packing Algorithm

4.1.1 Terminology:
(a) Measurement Tasks and Jobs - A measurement task Ti consists of a sequence of
jobs J i

Sx−Sy
, J i

Sx−Sz
, J i

Sy−Sx
, ... that need to be executed periodically between measure-

ment servers x,y,z,... for n cycles between a start time tstart and an end time tend, such that-

tend > tstart + nδ (1)

where δ is defined as ”cycle time”, which is described in the next subsection. To bet-
ter understand the above definition of tasks and jobs, consider an example of a mea-
surement task as follows- Given a cycle time of 120 minutes, let task T1 involve run-
ning a full-mesh Iperf test between 3 measurement servers:S1, S2 and S3. Consequently,
J1

S1−S2
, J1

S1−S3
, J1

S2−S1
, J1

S2−S3
, J1

S3−S1
, J1

S3−S2
represent the corresponding jobs of

T1, which get initiated once every 120 minutes.

(b) Cycle Time - ”Cycle time” δ parameter is the time-window during which, a com-
plete round of all scheduled jobs are executed; i.e., it’s the time within which one unique
set of all the measurement jobs that were scheduled between all the measurement servers
are performed using the appropriate tools specified in the measurement requirement spec-
ifications. Cycle time is the parameter that dictates the ”efficiency” design goal of a sched-
uler as described in Section 1. Larger the number of measurement servers or tools in the
measurement requirement specifications, larger is the cycle time. Also, shorter the cycle
time, the more frequently we can obtain network health information for any given network
path, which results in a better understanding of the performance of the network paths in
an NMI. Hence, the goal of an efficient scheduler must be to minimize the cycle time as
much as possible.

(c) Scheduler Bin - A scheduler bin corresponds to a time fraction of the cycle time
within which measurement jobs are packed. The concept of a bin is useful in applying
different heuristic bin packing algorithms where multiple jobs can be scheduled within
a bin in an overlapped fashion. The criterion for overlapping jobs within the same time
frame or bin, for a given set of measurement servers and measurement tools, is based on
the structure of the ”Tool Conflict Graph” and ”Link Conflict Graph”, both of which are
explained in the following subsections. In comparison to the jobs scheduled using heuris-
tic bin packing algorithms, jobs scheduled using round-robin bin schemes are ordered
sequentially in time without any overlap of jobs.

(d) Tool Conflict Graph - A Tool Conflict Graph, created for a given set of measure-
ment tools, is used for making scheduling decisions in the process of execution of our
heuristic bin packing algorithm. This graph indicates if any two tools should or shouldn’t
be run with mutual exclusion on a given measurement server. The reason for ensuring



Figure 3: Tool Conflict Graph for tools
in Table 1

Figure 4: Link Conflict Graph for a
tree-type measurement cluster topology

Task# Measurement Tool CPU Intensive Channel Intensive

T1 Iperf Yes Yes

T2 H.323 Beacon No Yes

T3 Pathchar Yes No

T4 Ping No No

Table 1 Measurement Tools CPU and Channel Resource Consumptions

mutual exclusion (as discussed in Section 1) is to avoid ”CPU” and ”Channel” resource
contention when initiating tests from measurement tools that are- either CPU or channel
intensive or are both CPU and channel intensive.

Table 1 shows measurement tools that either consume or don’t consume CPU and
channel resources based on the measurement technique used in a given tool. For example,
Pathchar does not consume significant channel resources at any given point of time, since
it uses a series of ICMP packets for probing. However, Pathchar uses complex statistical
analysis based on the ICMP packet responses and determines: Latency and bandwidth of
each link in the path, distribution of queue times at intermediate hops along a path and
the probability that a packet is dropped. In our tests involving Pathchar, we have observed
that the calculations involving the reporting of the above measurement metrics consume
significant CPU resources.

Figure 3 shows the tool conflict graph for the measurement tools listed in Table 1.
An ”edge” connecting two tasks implies mutual exclusion has to be ensured in executing
the two tasks on a given measurement server; i.e., an Iperf measurement task cannot be
concurrently scheduled along with an H.323 Beacon measurement task. However, it is
acceptable if an Iperf measurement task is concurrently scheduled along with a Ping task.
A tool that has an edge to any other tool is considered to have an edge to itself.

(e) Link Conflict Graph - A Link Conflict Graph also uses a similar ”edge-based”
mutual exclusion concept seen in the Tool Conflict Graph, except, the decision of ensur-
ing mutual exclusion is done at the link level when scheduling measurements between
two measurement servers versus the decision that is made at a single measurement server
level in the case of a Tool Conflict Graph. For example, the Link Conflict Graph shown
in Figure 4 for a tree-type cluster topology of measurement servers implies that- if a mea-



Figure 5: Active Measurements Scheduling Schemes (a) Adhoc Packing (b) Round
Robin Packing (c) Heuristic Bin Packing

surement task has been scheduled between S1 and S3 (S1-S3), the following measurement
tasks: S3-S1, S1-S2 and S2-S1, cannot be concurrently scheduled in the time frame within
which the S1-S3 task is being executed. However, either of the measurement tasks: S2-S4
or S4-S2 will be allowed in the same time frame as the S1-S3 measurement task.
4.1.2 Methodology:
Figures 5(a)-(c) show the active measurement jobs scheduling by the adhoc, round robin
and heuristic bin packing schemes respectively for the measurement cluster topology
shown in Figure 4. For simplicity in explanation, we assume in Figures 5(a)-(c) that jobs
of only one measurement task T1, which is both CPU and Channel intensive, need to
scheduled between the measurement servers S1, S2, S3 and S4.

As shown in Figure 5(a), in the adhoc packing schemes where there are no consid-
erations for mutual exclusion of measurements, jobs are randomly scheduled leading to
collisions in the bins present in between the t1 and t3 time frame. Figure 5(b) shows the
same set of jobs being scheduled using the round robin packing scheme, so as to ensure
mutual exclusion between the measurements. The jobs are sequentially placed without
any overlap of jobs in any time frame.

In Figure 5(c), the jobs of measurement task T1 have been scheduled using the heuristic
bin packing scheme, so as to ensure mutual exclusion between the measurements. A job
is placed in a bin even if there is a job that has already been scheduled in the same bin
on the condition that there is no ”edge” present in both the tool conflict graph and link
conflict graph involving the two jobs. As seen in Figure 5(c), jobs JS4−S2

and JS2−S4
are

scheduled in the same time frame as the jobs JS3−S1
and JS1−S3

since both S2 and S4
don’t have edges to S1 and S3.

δ1, δ2 and δ3 shown in Figures 5(a) - (c) represent the cycle times obtained by schedul-
ing the jobs using the adhoc packing scheme, round robin packing scheme and heuris-
tic bin packing scheme, respectively. Although, we can observe that the adhoc packing



scheme performs best in terms of cycle time compared to the round robin and heuristic
bin packing schemes (δ1 < δ2 < δ3), the adhoc packing scheme is inefficient since it
results in erroneous measurement results. Also, it is obvious from Figures 5(a)-(c) that
the round robin packing scheme though achieves mutual exclusion of measurements, it
is inefficient in terms of minimizing the cycle time in comparison with the heuristic bin
packing scheme. Hence, the heuristic bin packing scheme provides an efficient approach
to measurement jobs scheduling in terms of both correctness of measurements and in
terms of minimizing the cycle time for any given set of measurement scheduling require-
ments.

4.2 System Implementation

OnTimeMeasure has been designed from our experience of designing an active measure-
ments scheduler for an end-to-end network performance measurement testbed spanning
campus, regional and national academic backbone network paths. We initially imple-
mented a round robin scheduling scheme for our measurement testbed. When we started
expanding our testbed into an NMI for our Third Frontier Network (OARnet Network
Backbone), we realized the round-robin scheme was inefficient. This led to our design
and consequent implementation of OnTimeMeasure in our NMI which is explained in
detail in the following subsections.
4.2.1 Preliminary Implementation:
We initially developed a preliminary version of OnTimeMeasure for a pilot testbed [12]
we built as part of the Third Frontier Network Measurement Project which has been
funded by the Ohio Board of Regents. Our pilot testbed consists of paths interconnect-
ing The Ohio State University, University of Cincinati and North Carolina State Univer-
sity campuses. The pilot testbed has been built to study empirical end-to-end network
performance bottlenecks in campus, regional and national academic backbone networks.
Each measurement site has two measurement servers connected to the routers at strategic
points in the network. CDMA time sources have been deployed at each of the sites, mak-
ing them Stratum-1 Network Time Protocol (NTP) Servers, for obtaining precise global
clock synchronization for one-way delay measurements. Each of the measurement servers
is equipped with a network measurement toolkit that comprises of many open-source
measurement tools. Our preliminary version of OnTimeMeasure consisted of a ”central
scheduler” that generates measurement ”timetables” for each of the measurement servers
in the pilot testbed to orchestrate active measurements initiated between the measure-
ment servers. The timetable for each measurement server specifies the times at which a
cron job executes a particular tool test on the measurement server. Detailed explanation
of the workflow of the preliminary implementation of our scheduling framework can be
obtained from [12].
4.2.2 Revised Implementation Architecture:
There were many limitations in the design of our preliminary version of OnTimeMeasure.
There was no mechanism to systematically specify scheduling requirements in terms peri-
odicity or measurement cluster topology or MLAs that needed to be incorporated into the
scheduling decision process. This caused a lack of flexibility in the design of the sched-
uler to automatically address various requirements such as frequency and consistency of



Figure 6: OnTimeMeasure Framework.

periodicity of active measurements in the testbed paths. Also, there was no support for
incorporating on-demand tests into the timetables.

Towards addressing the above limitations, we extended the OnTimeMeasure frame-
work with a ”Scripting Language Interface” and the ”Heuristic Bin Packing Algorithm”,
described in Section 4.1, to generate the measurement timetables as shown in Figure 6.
The scripting language interface provides a generic and automated way to specify various
measurement requirements such as periodicity information, measurement cluster topol-
ogy, MLAs and any on-demand tests. The measurement requirements specifications col-
lected using the scripting language interface are used by the heuristic bin packing algo-
rithm in determining timetables for each of the measurement servers in the network being
monitored. The heuristic bin packing algorithm is part of the ”Central Scheduler Module”
(CSM) that resides in the ”Central Database and Analysis Beacon” server as shown in
Figure 6. The roles of the ”Central Database and Analysis Beacon” server are to get the
input specification of active measurements, centrally schedule the specified active mea-
surements, collect all the measurement data from the measurement servers and also to
analyze, summarize and visualize the collected measurement data in real-time.
4.2.3 Scripting Language Interface:
We have developed a simple scripting language that can be used for writing scheduler-
input configuration scripts. We have also developed a script-interpreter that parses the
scheduler input configuration scripts to organize the various measurement requirement
specifications such as: measurement server topology description, measurement tools de-



Figure 7: Sample scheduler-input configuration script to specify active measurement re-
quirements

scriptions, periodicity desired for the measurement tasks, MLAs and on-demand mea-
surement tasks related information.

Figure 7 illustrates the format of a sample scheduler-input configuration script. Using
a ”servers” tag, an end-user can specify the measurement servers for which measurement
timetables need to be generated. A ”cluster” tag indicates the measurement cluster topol-
ogy for all the measurement servers that include details of specific interconnections of the
topology. A ”task#” tag is used to describe tool-specific information that is used for both
generating the measurement timetables and for initiating the tests appropriately. Multi-
ple task numbers can be created for a single tool that has multiple switch options. Just
specifying a task in a configuration script does not suffice inclusion of the task into the
measurement timetables; the task also needs to be included in either the ”periodic” or
”ondemand” tags along with start and end times for the initiating multiple jobs of that
particular task. An ”mla” tag is also part of the scripting language syntax where, infor-
mation regarding bandwidth limits allowed for consumption can be specified for each/all
tasks.



5. Performance Evaluation

In this section, we evaluate the performance of the heuristic bin packing scheme in com-
parison with the adhoc packing and the round robin packing schemes. Collision Rate is
used as a metric to compare the correctness of measurements performed using the heuris-
tic bin packing scheme, with the adhoc packing scheme. Collision Rate provides an es-
timate of the number of incorrect measurements caused due to lack of mutual exclusion
between a set of measurements initiated with a tool which is either/both CPU and Channel
intensive. Cycle Time Economy is used as a metric to compare the savings obtained in the
overall cycle time using the heuristic bin packing scheme over the round robin packing
scheme.

5.1 Collision Rate

Figure 8: Pathchar measurement re-
sults when running Pathchar and Iperf
measurements with and without mutual
exclusion

Figure 9: Iperf UDP Throughput mea-
surement results when running two Iperf
m easurements with and without mutual
exclusion

The results plotted in Figure 8 have been obtained by initiating Pathchar and Iperf
measurements in the same ”LAN testbed with WAN emulation” described in Section 1.
A total of 40 Pathchar tests were initiated during a test period. The first 20 tests that
took about 2 hours to complete, involved initiating Pathchar tests alone ensuring mutual
exclusion between successive tests using the heuristic bin packing scheme for the testbed.
The results thus obtained as shown in Figure 8 are consistent with the actual network
conditions affected by the cross traffic. The next 20 tests, which also took 2 hours to
complete, involved randomly initiating Iperf tests in conjunction with Pathchar tests using
the adhoc packing scheme. We observe that in this particular set of random tests, 15 of
the 20 tests (75%) resulted in collisions. Given the almost ideal conditions in our LAN
testbed for such a rate of collisions, we believe that the misrepresentation of the actual
network conditions could be even more pronounced in the real Internet where there are
more variables that could skew the correctness of active measurements.

Figure 9 shows the UDP throughput results obtained from initiating 40 Iperf tests in



Figure 10: Iperf Jitter measurement re-
sults when running two Iperf mea-
sureme nts with and without mutual ex-
clusion

Figure 11: Comparison of Cycle Times
for Round Robin Packing and Heuristic
Bin Packing Schemes for the full-mesh
and tree measurement cluster topologies

the same LAN testbed with WAN emulation that had a cross traffic of a 768 Kbps H.323
Videoconferencing session. Figure 10 shows the corresponding jitter values reported for
the above 40 Iperf tests. The first 20 tests that took about 10 minutes to complete, involved
initiating Iperf tests alone by ensuring mutual exclusion between successive tests using
the heuristic bin packing scheme. The next 20 tests, which also took about 10 minutes
to complete, involved randomly initiating Iperf tests in conjunction with the other Iperf
tests, by using the adhoc packing scheme. We observe that in this particular set of random
tests, the interference caused by conflicting tests resulted in 70% and 85.71% erroneous
measurements of UDP throughput and jitter, respectively.

5.2 Cycle Time Economy

Figure 11 shows the simulation results for cycle times obtained, with increase in the num-
ber of measurement servers, by using the round robin and heuristic bin packing schemes.
For the above simulation, jobs of 3 tools were used for scheduling. All the 3 tools were
assumed to be both CPU and Channel intensive with job execution times of 5 minutes, 5
minutes and 20 minutes, respectively. A bin size of 20 minutes was chosen so as to fit the
largest of the jobs to be scheduled.

We can observe that significant savings were obtained in cycle time for the full-mesh
cluster topology measurements that require n(n-1) measurements, by using the heuristic
bin packing scheme instead of the round robin packing scheme; n being the number of
measurement servers. However, the savings in cycle time for the tree cluster topology
measurements, though were noticeable, were not as significant as in the case of full-mesh
cluster topology measurements. Simulations for hybrid cluster topology measurements
were in accordance with the results obtained for the full-mesh and tree cluster topology
measurements. For a hybrid cluster topology with a dominant number of full-mesh cluster
measurement nodes, the savings in cycle time were significant. Whereas, for a hybrid
cluster topology with a dominant number of tree cluster measurement nodes, the savings
in cycle time were relatively less.



Figure 12: Effects of various bin sizes
on the Cycle Times for the Heuristic Bin
Packing Scheme

Figure 13: Effects of increase in the
number of measurement tools on the
Cycle Times for the Heuristic Bin Pack-
ing Scheme

Figure 12 shows the simulation results obtained for the same set of 3 tools scheduled
on a full-mesh measurement cluster topology, with varying bin sizes. It can be noted that
choosing an optimum bin size, based on the execution times of the jobs to be scheduled,
can further increase the savings in cycle time; i.e., choosing a bin size of 20, 40 or 60
results in a much less cycle time than choosing a bin size of 35. The above result as
shown in Figure 12 is true irrespective of the number of measurement servers for which
measurement jobs need to scheduled. It should be noted that the optimum bin size for a
given set of jobs depends on the individual execution times of the jobs.

Figure 13 shows the simulation results obtained for a full-mesh measurement cluster
topology, with a fixed bin size of 20 and with an increasing number of tools. We can note
that in both the round robin and heuristic packing cases, as the number of measurement
tools increase for a given number of measurement servers, the cycle time increase has a
trend; The cycle time increase is almost exponential in the case of round robin packing
scheme whereas the cycle time increase is almost linear in the case of the heuristic bin
packing scheme.

6. Conclusion and Future Work

In this paper, we detailed the various motivations and scheduling issues concerned with
using active measurements in NMIs. We discussed various scheduling schemes, being
used in existing NMIs, and their limitations. To address our identified limitations, we
proposed a novel active measurements scheduling framework called ”OnTimeMeasure”.
Lastly, we showed how a scripting language interface and a heuristic bin packing algo-
rithm can be used to address active measurements scheduling requirements in a system-
atic, less error-prone and efficient fashion for a network involving multiple measurement
servers, each hosting multiple measurement tools.

We are currently investigating techniques such as distributed hierarchical scheduling
to extend our our heuristic bin packing algorithm to function in a distributed scheduler
environment. Further, we are planning on integrating techniques such as shared private



keys and MD5 cryptographic checksums into the distributed scheduling framework of
OnTimeMeasure. Such security techniques will be particularly suitable for inter-ISP
measurements and have the potential to prevent abuse of NMI federations by network
intruders.

ACKNOWLEDGMENT
This work has been supported in part by The Ohio Board of Regents.

References

[1] P. Calyam, W. Mandrawa, M. Sridharan, A. Khan, P. Schopis, ”H.323 Beacon: An
H.323 application related end-to-end performance troubleshooting tool”, ACM SIG-
COMM Network Troubleshooting Workshop, 2004.

[2] Multicast Beacon - http://dast.nlanr.net/Projects/Beacon
[3] Z. Mao, R. Bush, T. Griffin, M. Roughan, ”BGP Beacons”, Internet Measurement

Conference, 2003.
[4] Pathchar - http://www.caida.org/tools/utilities/others/pathchar
[5] C. Dovrolis, P. Ramanathan, D. Morre, ”Packet Dispersion Techniques and Capacity

Estimation”, IEEE/ACM Transactions on Networking, 2004.
[6] S. Shalunov, B. Teittelbaum, ”One-way Active Measurement Protocol (OWAMP)”,

IETF RFC 3763, 2004
[7] Iperf - http://dast.nlanr.net/Projects/Iperf
[8] J. Navratil, L. Cottrell, ”ABwE: A Practical Approach to Available Bandwidth Esti-

mation”, PAM, 2003.
[9] Internet2 piPES Project - http://e2epi.internet2.edu
[10] SLAC Pinger Project - http://www-iepm.slac.stanford.edu/pinger
[11] NLANR AMP Project - http://watt.nlanr.net
[12] P. Calyam, D. Krymskiy, M. Sridharan, P. Schopis, ”TBI: End-to-end network per-

formance measurement testbed for empirical bottleneck detection”, IEEE TRIDENT-
COM, 2005.

[13] NISTnet network emulation package - http://snad.ncsl.nist.gov/itg/nistnet
[14] B. Gaidioz, R. Wolski, B. Tourancheau, ”Synchronizing Network Probes to

avoid Measurement Intrusiveness with the Network Weather Service”, IEEE High-
performance Distributed Computing Conference, 2000.

[15] R. Wolski, N. Spring, J. Hayes, ”The network weather service: A distributed re-
source performance forecasting service for metacomputing”, Future Generation Com-
puter Systems, 1999.


