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A “GAP-Model” based Framework for Online
VVoIP QoE Measurement

Prasad Calyam, Eylem Ekici, Chang-Gun Lee, Mark Haffner, Nathan Howes

Abstract: Increased access to broadband networks has led to a
fast-growing demand for Voice and Video over IP (VVoIP) appli-
cations such as Internet telephony (VoIP), videoconferencing,and
IP television (IPTV). For pro-active troubleshooting of VVoIP per-
formance bottlenecks that manifest to end-users as performance
impairments such as video frame freezing and voice dropouts, net-
work operators cannot rely on actual end-users to report theirsub-
jectiveQuality of Experience (QoE). Hence, automated andobjec-
tive techniques that provide real-time or online VVoIP QoE esti-
mates are vital. Objective techniques developed to-date estimate
VVoIP QoE by performing frame-to-frame Peak-Signal-to-Noise
Ratio (PSNR) comparisons of the original video sequence and the
reconstructed video sequence obtained from the sender-side and
receiver-side, respectively. Since processing such video sequences
is time consuming and computationally intensive, existing objec-
tive techniques cannot provide online VVoIP QoE. In this paper,
we present a novel framework that can provide online estimates of
VVoIP QoE on network paths without end-user involvement and
without requiring any video sequences. The framework features
the “GAP-Model”, which is an offline model of QoE expressed as
a function of measurable network factors such as bandwidth, de-
lay, jitter, and loss. Using the GAP-model, our online framework
can produce VVoIP QoE estimates in terms of “Good”, “Accept-
able” or “Poor” (GAP) grades of perceptual quality solely from the
online measured network conditions.

Index Terms: Network management, user QoE, video quality.

I. Introduction

Voice and Video over IP (VVoIP) applications such as Internet
telephony (VoIP), videoconferencing and IP television (IPTV)
are being widely deployed for communication and entertain-
ment purposes in academia, industry and residential commu-
nities. Increased access to broadband networks and significant
developments in VVoIP communication protocols viz., H.323
(ITU-T standard) and SIP (IETF standard), have made large-
scale VVoIP deployments possible and affordable.

For pro-active identification and troubleshooting of VVoIP
performance bottlenecks, network operators need to perform
real-time or online monitoring of VVoIP QoE on their opera-
tional network paths on the Internet. Network operators cannot
rely on actual end-users to report theirsubjectiveVVoIP QoE
on an on-going basis. For this reason, they require measure-
ment tools that use automated andobjectivetechniques which
do not involve end-users for providing on-going online estimates
of VVoIP QoE.
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Objective techniques [1] and [2] developed to-date esti-
mate VVoIP QoE by performing frame-to-frame Peak-Signal-
to-Noise Ratio (PSNR) comparisons of the original video se-
quence and the reconstructed video sequence obtained from the
sender-side and receiver-side, respectively. PSNR for a set of
video signal frames is given by Equation (1).

PSNR(n)db = 20log10

(

Vpeak

RMSE

)

(1)

where, signalVpeak = 2k - 1; k = number of bits per pixel (lu-
minance component);RMSEis the mean square error of the Nth

column and Nth row of sent and received video signal frame
n. Thus obtained PSNR values are expressed in terms of end-
user VVoIP QoE that is quantified using the widely-used “Mean
Opinion Score” (MOS) ranking method [3]. This method ranks
perceptual quality of an end-user on a subjective quality scale
of 1 to 5. Figure 1 shows the linear mapping of PNSR values
to MOS rankings. The [1, 3) range corresponds to “Poor” grade
where an end-user perceives severe and frequent impairments
that make the application unusable. The [3, 4) range corre-
sponds to “Acceptable” grade where an end-user perceives inter-
mittent impairments yet the application is mostly usable. Lastly,
the [4, 5] range corresponds to “Good” grade where an end-user
perceives none or minimal impairments and the application is
always usable.

Fig. 1. Mapping of PSNR values to MOS rankings

Such a PSNR-mapped-to-MOS technique can be termed as an
offline technique because: (a) it requires time and spatial align-
ment of the original and reconstructed video sequences, which is
time consuming to perform, and (b) it is computationally inten-
sive due to its per-pixel processing of the video sequences.Such
offline techniques are hence not useful for measuring real-time
or online VVoIP QoE on the Internet. In addition, the PSNR-
mapped-to-MOS technique does not address impact of the joint
degradation of voice and video frames. Hence, impairments that
annoy end-users such as “lack of lip synchronization” [4] due to
voice trailing or leading video are not considered in the end-user
QoE estimation.
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To address these problems, we present a novel framework in
this paper that can provideonlineobjective estimation of VVoIP
QoE on network paths: (a) without end-user involvement for
quality rankings, (b) without requiring any video sequences,
and (c) considering joint degradation effects of both voiceand
video. Figure 2 shows our overall framework to produce on-
line VVoIP QoE estimates. The framework is based on the
offline constructed, psycho-acoustic/visual cognitive model of
QoE called “GAP-Model”. For its construction, we use a novel
closed-network test methodology that asks human subjects to
rank QoE of streaming and interactive audio/video clips fora
wide range of network conditions. The collected human subject
rankings are fed into the multiple-regression analysis resulting
in closed-form expressions of QoE as functions of measurable
network factors such as bandwidth, delay, jitter, and loss.Using
such an offline constructed GAP-model, our online framework
can estimate QoE of an online VVoIP session solely from (i) the
continuously measured network conditions, and (ii) the VVoIP
session information. Prior to the VVoIP session establishment or
while the session is ongoing, our framework can estimate QoE
following the flow of Figure 2. The VVoIP session information
request (t)specifies the test session’s peak video encoding rate
and whether the session involvesstreamingor interactiveVVoIP
streams. A streaming session is comprised of one-way streams
where an end-user passively receives audiovisual content from
a source at the head-end (i.e., IPTV). In comparison, an inter-
active session is comprised of bi-directional streams where end-
users on both ends interact with each other (i.e., videoconfer-
encing). The online network conditions are measured by test
initiation att using a VVoIP-session-traffic emulation tool called
“Vperf” [5] that we have developed. After the test durationδt
that is required to obtain a statistically stable measurement, the
network condition measured in terms of network factors viz.,
bandwidth (t+δt), delay (t+δt), jitter (t+ δt) and loss (t+δt) are
input to the GAP-Model. The GAP-Model then produces a test
report instantly with a VVoIP QoE estimateMOS (t+δt) in terms
of “Good”, “Acceptable” or “Poor” (GAP) grades.

Fig. 2. Online VVoIP QoE Measurement Framework

The remainder of the paper is as follows: Section II presents
related work. Section III describes a VVoIP system and defines
related terminology. Section IV explains the closed-network
test methodology. Section V discusses the GAP-Model based
framework implementation featuring the Vperf tool and its ap-
plication. Section VI presents the performance evaluationand
validation of the GAP-Model. Section VII concludes the paper.

II. Related Work

Objective techniques that use computational models to ap-
proximate subjective QoE (MOS) have been widely studied for
VoIP applications [6] [7] [8] [9]. The E-model [6] is one such
technique that has been repeatedly proven to be effective and
thus has been widely adopted in measurement tools developed
by industry (e.g., Telchemy’s VQMon [10]) and open-source
community (e.g., OARnet H.323 Beacon [11]). The primary
reason for E-model’s success is its ability to provide online esti-
mates of VoIP QoE based on instantaneous network health mea-
surements (i.e., packet delay, jitter and loss) for a given voice en-
coding scheme. Before E-model, the only available techniques
were offline techniques such as PESQ [7] that are not suited for
online monitoring of end-user VoIP QoE. The PESQ is an of-
fline technique because it requires the source-side reference au-
dio signal and its corresponding receiver-side audio signal that
has experienced degradation due to network conditions.

Although the E-Model is effective for online VoIP QoE mea-
surements, the considerations used in the E-model are not per-
tinent for VVoIP QoE measurements due to idiosyncrasies in
the video traffic encoding and impairment characteristics.The
E-Model considers voice traffic as Constant Bit Rate (CBR) en-
coded with constant packet sizes and fixed data rates that are
known for a given voice codec with a set audio sampling fre-
quency. In comparison, the video traffic is Variable Bit Rate
(VBR) encoded with variable packet sizes and bursty data rates
that depend upon the temporal and spatial nature of the video
sequences. Also, E-model considers voice signals to be af-
fected by impairments such as drop-outs, loudness and echoes
whereas, video signals are affected by impairments such as
frame freezing, jerky motion, blurriness and tiling [12].

To estimate video QoE affected by network conditions, the
most widely adopted technique is the PSNR-mapped-to-MOS
technique which is offline in nature as described in Section I.
The traditional PSNR-mapped-to-MOS technique was proven to
be inaccurate in terms of correlation with perceived visualqual-
ity in many cases due to non-linear behavior of the human visual
system for compression impairments [13] [14] [15]. It is nowan
established fact that end-user QoE and the pixel-to-pixel-based
distances between original and received sequences considered
in the PSNR-mapped-to-MOS technique do not always match-
up with one another. Hence, several modifications have been
made to the traditional PSNR-mapped-to-MOS technique to im-
prove its estimation accuracy. The improved PSNR-mapped-to-
MOS technique has been ratified by communities such as the
ITU-T in their J.144 Recommendation [2] and the ANSI in their
T1.801.03 Standard [16]. It is relevant to note that there are sev-
eral other objective techniques to measure VVoIP QoE such as
ITS, MPQM, and NVFM [35] that are all offline in nature and
are comparable to the PSNR-mapped-to-MOS technique.

Recently, there have been attempts in works such as [17], [18]
and [19] to develop a novel technique that can produce on-
line VVoIP QoE estimates. In [17], video distortion due to
packet loss is estimated using a loss-distortion model. Theloss-
distortion model uses online packet loss measurements and takes
into account other inputs such as video codec type, coded bitrate
and packetization to estimate online PSNR values. The limita-
tion of this work is that the PSNR degradation was not com-
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pared with subjective assessments from actual human subjects
and hence the approach effectiveness is questionable. In [18], a
Human Visual System (HVS) model is proposed that produces
video QoE estimates without requiring reconstructed videose-
quences. This study validated their estimation accuracy with
subjective assessments from actual human subjects, however,
the HVS model is primarily targeted for 2.5/3G networks. Con-
sequently, it only accounts for PSNR degradation for online
measurements of noisy wireless channels with low video encod-
ing bit rates. In [19], a random neural network (RNN) model is
proposed that takes video codec type, coded bit rate, packetloss
as well as loss burst size as inputs and produces real-time MOS
estimates. All of the above models do not address end-user inter-
action QoE issues that are affected by excessive network delay
and jitter. Further, these studies do not address issues relating
to the joint degradation of voice and video frames in the end-
user VVoIP QoE estimation. In comparison, our GAP-Model
addresses these issues as well in the online VVoIP QoE estima-
tion.

III. VVoIP System Description

Fig. 3. End-to-end view of a basic VVoIP system

Figure 3 shows an end-to-end view of a basic VVoIP sys-
tem. More specifically, it shows the sender-side, network and
receiver-side components of a point-to-point videoconferenc-
ing session. The combined voice and video traffic streams in
a videoconference session are characterized by encoding rate
(bsnd) originating from the sender-side and can be expressed as
shown in Equation (2).

bsnd = bvoice + bvideo

= tpsvoice

(

bcodec

ps

)

voice

+ tpsvideo

(

bcodec

ps

)

video

(2)

where tps corresponds to the total packet size of either voice
or video packets, whose value equals a sum of the payload size
(ps) of voice or video packets, the IP/UDP/RTP header size (40
bytes) and the Ethernet header size (14 bytes);bcodec corre-
sponds to the voice or video codec data rate values chosen. For
high-quality videoconferences, G.711/G.722 voice codec and
H.263 video codec are the commonly used codecs in end-points
with peak encoding rates ofdbvoicee = 64 Kbps anddbvideoe =
768 Kbps, respectively [20]. The end-users specify thedbvideoe
setting as a “dialing speed” in a videoconference session. The
alev refers to the temporal and spatial nature of the video se-
quences in a videoconference session.

Following the packetization process at the sender-side, the
voice and video traffic streams traverse the intermediate hops

on the network path to the receiver-side. While traversing, the
streams are affected by the network factors i.e., end-to-end net-
work bandwidth (bnet), delay (dnet), jitter (jnet) and loss (lnet)
before they are collected at the receiver-side (brcv). If there is
adequatebnet provisioned in a network path to accomodate the
bsnd traffic, brcv will be equal tobsnd. Otherwise,brcv is lim-
ited tobnet, whose value equals the available bandwidth at the
bottleneck hop in the network path as shown in the relations of
Equation (3)1.

bnet = min
i=1..hops

bithhop,

brcv = min(bsnd, bnet) (3)

The received audio and video streams are processed using de-
jitter buffers to smoothen the jitter effects and are further ame-
liorated using sophisticated decoder error-concealment schemes
that recover lost packets using motion-compensation informa-
tion obtained from the damaged frame and previously received
frames. Finally, the decompressed frames are output to the dis-
play terminal for playback with an end-user perceptual QoE
(qmos).

From the above description, we can see thatqmos for a given
set ofalev andbsnd can be expressed as shown in the relation-

qmos = f(bnet, dnet, lnet, jnet) (4)

Earlier studies have shown that theqmos can be expected to re-
main within a particular GAP grade when each of the network
factors are within certain performance levels shown in Table 1.
Specifically, [21] and [22] suggest that for Good grade,bnet

should be at least 20% more than the dialing speed value, which
accommodates additional bandwidth required for the voice pay-
load and protocol overhead in a videoconference session;bnet

values less than 25% of the dialing speed result in Poor Grade.
The ITU-T G.114 [23] recommendation provides the levels for
dnet and studies including [24] and [25] provide the perfor-
mance levels forjnet and lnet on the basis of empirical exper-
iments on the Internet. However, these studies do not provide
a comprehensive QoE model that can address the combined ef-
fects ofbnet, dnet, jnet, andlnet.

IV. GAP-Model Formulation

In this section, we present the GAP-Model that produces on-
line qmos based on online measurements ofbnet, dnet, lnet and
jnet for a given set ofalev andbsnd. A novel closed-network test
methodology involving actual human subjects is used to derive
the GAP-Model’s closed-form expressions. In this methodol-
ogy, human subjects are asked to rank their subjective percep-
tual QoE (i.e., MOS) of streaming and interactive video clips
shown for a wide range of network conditions configured using
the NISTnet WAN emulator [26]. Unlike earlier studies relating
to QoE degradation which considered isolated effects of indi-
vidual network factors such as loss [17] and bandwidth [27],
we consider the combined effects of the different levels ofbnet,
dnet, lnet andjnet, each within a GAP performance level.

1Note thatbithhop is not the total bandwidth but the bandwidth provided to
the flow at thei-th hop and hence it can never be larger than the bandwidth
requested, i.e.,bsnd. Thus,bnet is the bandwidth measured at the network ends
for the flow.
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Table 1. qmos GAP grades and performance levels of network factors for dbvideoe = 768 Kbps

Network Factor Good Acceptable Poor
bnet (>922] Kbps (576-922) Kbps [0-576) Kbps
dnet [0-150) ms (150-300) ms (>300] ms
lnet [0-0.5) % (0.5-1.5) % (>1.5] %
jnet [0-20) ms (20-50) ms (>50] ms

Although such a consideration reflects the reality of the net-
work conditions seen on the Internet, modelingqmos as a func-
tion of the four network factors in three different levels leads
to a large number of test cases (i.e., 34 = 81 test cases) per hu-
man subject. The test cases can be ordered based on increas-
ing network condition severity and listed as [< GGGG >,
< GGGA >, < GGAG >, ..., < APPP >, < PPPP >],
where each test case is defined by a particular sequence of the
network factor levels< bnet dnet lnet jnet >. For example,
the < GGGG > test case corresponds to the network con-
dition wherebnet, dnet, lnet and jnet are in their Good grade
levels. Administering all the 81 test cases per human subject
is an expensive process and also involves long hours of testing
that is burdensome and exhaustive to the human subject. Con-
sequently, the perceptual QoE rankings provided by the human
subject may be highly error-prone.

To overcome this, we present a novel closed-network test
methodology that significantly reduces the number of test cases
and hence the testing time for human subjects for providing
rankings without compromising the rankings data required for
adequate model coverage. We note that our test methodology
can be generalized for any voice (e.g. G.711, G.722, G.723) and
video codec (e.g. MPEG-x, H.26x). For simplicity, we focus
our testing to only the most commonly used codecs i.e., G.722
voice codec and the H.263 video codec. These codecs are the
most commonly used for business quality videoconferences as
observed from our experiences during routine videoconferenc-
ing operations at the Ohio Supercomputer Center2. They are
also the most commonly used codecs on video file sharing sites
such as MySpace and Google Video.

In the following subsections, we first explain the test case re-
duction strategies of our novel closed-network test methodol-
ogy. Next, we describe our closed-network testing with actual
human subjects. Finally, we explain how theqmos rankings ob-
tained from the human subjects are processed to formulate the
GAP-Model’s closed-form expressions.

A. Test Case Reduction Strategies

To reduce the number of test cases per human subject for
providing rankings without compromising the rankings datare-
quired for adequate model coverage, we use two strategies: (i)
reduction based on network condition infeasibility and (ii) re-
duction based on human subjects’ ranking inference.

2Majority of today’s videoconferencing end-points use the H.263 video codec
and a small fraction of the latest end-points support the H.264 video codec,
which is an enhanced version of the H.263 codec targeted mainly for improved
codec performance at low bit rates.

Fig. 4. jnet measurements for increasing bnet

A.1 Reduction Based on Network Condition Infeasibility

For this strategy, we perform a network emulator qualification
study to identify any practically infeasible network conditions
i.e., test cases that do not exist in reality. The NISTnet WANem-
ulator is connected in between two isolated LANs, each having a
measurement server with the Iperf tool [28] installed. Different
network conditions are emulated with one factor as the control
and the other factors as the response. For example, if we use
bnet as the control, then the responses of the other three factors
dnet, lnet and jnet are measured and so on. All measurements
are from Iperf for 768 Kbps UDP traffic streams transferred be-
tween the two LANs via NISTnet.

Figures 4 and 5 show the Iperf measurement results that in-
dicate the infeasible network conditions. The results are av-
eraged over 20 measurement runs of Iperf for each network
condition configuration on NISTnet. From Figure 4 we can
see that there cannot be a network condition that has Good
jnet and Poorbnet simultaneously. Hence,< P ∗ ∗G > (=
1x3x3x1 = 9) test cases cannot be emulated in reality. Note here
that we use our previously defined network condition notation
< bnet dnet lnet jnet > and we assume ‘*’ can be substituted
with either one of the GAP grades. Similarly, from Figure 5
we can see that there cannot be network conditions that have
Good/Acceptablelnet and Poorbnet simultaneously. Hence,
< P ∗G∗ >, < P ∗A∗ >, < A∗G∗ > and< A∗A∗ > (9x4 =
36) test cases do not exist in reality. By considering all theinfea-
sible network conditions, we can get rid of 39 test cases. Hence,
we can reduce the number of test cases to 42 (39 subtracted from
81) per human subject for adequate model coverage.

A.2 Reduction Based on Human Subjects’ Ranking Inference

In this subsection, we explain another strategy to further re-
duce the number of test cases per human subject for providing
rankings without compromising the data required for adequate
model coverage. The basic idea of this strategy is to eliminate
more severe test cases during the testing based on the Poor rank-
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Fig. 5. lnet measurements for increasing bnet

ings given by human subjects for relatively less severe testcases.
For example, if a human subject ranked test case< GPPP >

with an extremely Poorqmos ranking (< 2), it can be inferred
that more severe test cases< APPP > and< PPPP > pre-
sented to the human subject will also result in extremely Poor
qmos. Hence, we do not administer the< APPP > and
< PPPP > test cases to the human subject during testing but
assign the same Poorqmos ranking obtained for< GPPP >

test case to the< APPP > and< PPPP > test cases in the
human subject’s final testing results. To implement the above
test case reduction strategy, we present the test cases within-
creasing severity (< GGGG > to < PPPP >).

Fig. 6. (a) VF test case ordering (b) HF test case ordering

Further, the test case reduction strategy can be implemented
by increasing the test case severity order in two ways: (i)
Vertical-First (VF) or (ii) Horizontal-First (HF) - shown in
Figure 6 (a) and (b), respectively. Using VF ordering, after
< GGGA >, the next severe condition in the test case list is
chosen as< GGGP > where the severity is increased verti-
cally (note that< GGGA >, < GGAG > and< GAGG >

are equivalent severe conditions); whereas, using HF ordering,
the next severe condition is chosen as< GGAA > where the
severity is increased horizontally. In the event that< GGAA >

test case receives an extremely Poorqmos ranking (< 2) by a
human subject, 36 (= 3x3x2x2) test cases get eliminated using
the inference strategy. Alternately, if< GGGP > test case re-
ceives an extremely Poorqmos ranking, only 27 (= 3x3x3x1) test
cases get eliminated. Hence, using the VF ordering, relatively
lesser test cases are eliminated when an extremely Poorqmos

ranking occurs. Although HF ordering reduces the testing time
compared to the VF ordering, we choose the VF ordering in the
human subject testing because it produces more data points and
thus relatively better model coverage.

B. Closed-network testing

B.1 Test Environment Setup

Fig. 7. Test environment setup for the closed-network testing

Fig. 8. Screenshot of chat client application with quality assessment
slider

Figure 7 shows the test environment we setup that incorpo-
rated the key considerations suggested in ITU-T P.911 [29] and
ITU-T P.920 [30] for streaming and interactive multimedia QoE
assessment tests, respectively. An isolated LAN testbed was
used with no network cross-traffic whatsoever. The test station
at the human subject end was setup in a quiet room with suf-
ficient light and ventilation. The test station correspondsto a
PC that runs a chat client application (shown in Figure 8) and
a videoconferencing end-point connected to a display terminal.
The chat client application uses the “quality assessment slider”
methodology recommended by [3] for recording human subject
rankings. The chat client application allowed the human sub-
ject to: (a) communicate his/her test readiness using the “Begin
Test” button, (b) indicate completion of his response during in-
teractive test clips using the “Response Complete” button,and
(c) submit subjective rankings using the “MOS Ranking” field
at the end of each test case - to the test administrator present in
a separate room. The videoconferencing end-point was used to
view the streaming and interactive test clips.

The test administrator end was equipped with a PC that ran
the chat server application. The test administrator end wasalso
equipped with a videoconferencing end-point connected to a
display terminal as well as a test clips source that had the stream-
ing and interactive test clips. The test administrator controlled
the test clips source and the NISTnet through a control soft-
ware embedded within the chat server application. The control
software guided the test administrator through the different se-
quential steps involved in the testing and automated core actions
to control the clips source and the NISTnet configurations. To
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show how we addressed the difficult challenges in implementing
the interactive tests and made them repeatible through automa-
tion, we present the pseudo-code of the control software forthe
interactive tests in the following:

Pseudo-code of the control software forinteractive tests

Input: 42 test cases list for interactive tests
Output: Subjective MOS rankings for the 42 test cases
Begin Procedure
1. Step-1: Initialize Test
2. Preparej = 1. . . 42 test cases list with increasing network condition severity
3. Initialize NISTnet WAN emulator by loading the kernel module and flushing
inbound/outbound pipes
4. Initialize playlist in interactive clip source
5. Play interactive “baseline clip” for human subject no-impairment stimulus
reference
6. Step-2: Begin Test
7. Enterith human subject ID
8. loop for j test cases:if (Check for receipt ofjth “Begin Test” message)
9. Flush NISTnet WAN emulator’s inbound/outbound pipes
10. Configure the network condition commands on NISTnet WAN emula-
tor for jth test case
11. Play interactive test clip from clips source
12. Pause interactive test clip at the time point where human subject re-
sponse is desired
13. if (Check for receipt of “Response Complete” message)
14. Continue playing the interactive test clip from the clips source
15. end if
16. if (Check for receipt of “MOS Ranking” message)
17. Reset interactive test clip in the clips source
18. Saveith human subject’sjth interactive MOS ranking to database
19. if (ith human subject’sjth interactive MOS ranking< 2)
20. Removek corresponding higher severity test cases from test
case list
21. for eachk
22. Assignith human subject’sjth interactive MOS ranking
23. end for
24. end if
25. Incrementj
26. end if
27. end loop
28. Step-3: End Test
29. Shutdown the NISTnet WAN emulator by unloading the kernelmodule
30. Close playlist in interactive clip source
End Procedure

B.2 Human Subject Selection

Human subject selection was performed in accordance with
the Ohio State University’s Institutional Review Board (IRB)
guidelines for research involving human subjects. The guide-
lines insist that human subjects should voluntarily participate in
the testing and must provide written consent. Further, the human
subjects must be informed prior about the purpose, procedure,
potential risks, expected duration, confidentiality protection, le-
gal rights and possible benefits of the testing. Regarding the
number of human subjects for testing, ITU-T recommends 4 as
a minimum total for statistical soundness [19].

To obtain a broad range of subjective quality rankings from
our testing, we selected a total of 21 human subjects evenly dis-
tributed across three categories (7 human subjects per category):
(i) Expert user, (ii) General user, and (iii) Novice user. AnEx-
pert user is one who has considerable business-quality video-
conferencing experience due to regular usage and has in-depth
system understanding. A General user is one who has moderate
experience due to occasional usage and has basic system under-
standing. A Novice user is one who has little prior business-

quality videoconferencing experience but has basic systemun-
derstanding. Such a categorization allowed collection of sub-
jective quality rankings that reflect the perceptual quality id-
iosyncrasies dependent on a user’s experience level with VVoIP
technology. For example, an Expert user considers lack of lip-
synchronization as a more severe impairment than audio drop-
outs, which happens to be the most severe impairment for a
Novice user - while penalizing MOS rankings.

B.3 Video Clips

For test repeatability, each human subject was exposed to two
sets of clips for which, he/she providedqmos rankings. The
first set corresponded to a streaming video clipStreaming-Kelly
and the second set corresponded to an interactive video clip
Interactive-Kelly, both played for the different network condi-
tions specified in the test case list. These two video clips were
encoded at 30 frames per second in CIF format (352 lines x
288 pixels). The duration of each clip was approximately 120
seconds and hence provided each human subject with enough
time to assess perceptual quality. Our human subject training
method to rank the video clips is based on the “Double Stimu-
lus Impairment Scale Method” described in the ITU-R BT.500-
10 recommendation [31]. In this method,baselineclips of the
streaming and interactive clips are played to the human subject
before commencement of the test cases. These clips do not have
any impairment due to network conditions i.e.,qmos ranking
for these clips is 5. The human subjects are advised to rank
their subjective perceptual quality for the test cases relative to
the baseline subjective perceptual quality.

B.4 Test Cases Execution

Before commencement of the testing, the training time per
human subject averaged about 15 minutes. Each set of test cases
per human subject for the streaming as well as interactive video
clips lasted approximately 45 minutes. Such a reasonable testing
time was achieved due to: (a) our test case reduction strategy
described in Section IV that reduced the 81 possible test cases
to a worst case testing of 42 test cases, and (b) our test case
reduction strategy described in Section IV that further reduced
the number of test cases during the testing based on inference
from the subjective rankings.

For emulating the network condition as specified by a test
case, the network factors had to be configured on NISTnet to
any values within their corresponding GAP performance lev-
els shown in Table 1. We configured values in the performance
levels for the network factors as shown in Table 2. For exam-
ple, for the< GGGG > test case, the NISTnet configuration
was< bnet = 960Kbps; dnet = 80ms; lnet = 0.25%; jnet =
10ms >. The reason for choosing these values was that the
instantaneous values for a particular network condition config-
uration vary around the configured value (although the average
of all the instantaneous values over time is approximately equal
to the configured value). Hence, choosing the values shown in
Table 2 enabled sustaining the instantaneous network conditions
to be within the desired performance levels for the test caseex-
ecution duration.
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Table 2. Values of network factors within GAP performance levels for

NISTnet configuration
Network Factor Good Acceptable Poor

bnet 960 Kbps 768 Kbps 400 Kbps
dnet 80 ms 280 ms 600 ms
lnet 0.25 % 1 % 2 %
jnet 10 ms 35 ms 75 ms

C. Closed-form Expressions

In this subsection, we derive the GAP-Model’s closed-form
expressions usingqmos rankings obtained from the human sub-
jects during the closed-network testing. As stated earlier, sub-
jective testing for obtainingqmos rankings from human subjects
is expensive and time consuming. Hence, it is infeasible to con-
duct subjective tests that can provide completeqmos model cov-
erage for all the possible values and combinations of network
factors in their GAP performance levels. In our closed-network
testing, theqmos rankings were obtained for all the possible net-
work condition combinations with one value of each network
factor within each of the GAP performance levels. For this rea-
son, we treat theqmos rankings from the closed-network testing
as “training data”. On this training data, we use the statisti-
cal multiple regression technique to determine the appropriate
closed-form expressions. Thus obtained closed-form expres-
sions enable us to estimate the streaming and interactive GAP-
Model qmos rankings for any given combinations of network
factor levels measured in an online manner on a network path as
explained in Section V.

The averageqmos ranking for network conditionj (i.e.,qj
mos)

is obtained by averaging theqmos rankings of theN = 21 hu-
man subjects for network conditionj as shown in Equation (5).

qmos =
1

N

N
∑

i=1

qij
mos (5)

The qj
mos ranking is separately calculated for the streaming

video clip tests (S-MOS) and the interactive video clip tests
(I-MOS). This allows us to quantify the interaction difficulties
faced by the human subjects in addition to their QoE when pas-
sively viewing impaired audio and video streams. Figure 9 il-
lustrates the differences in the S-MOS and I-MOS rankings due
to the impact of network factors. Specifically, it shows the de-
creasing trends of the S-MOS and I-MOS rankings for test cases
with increasing values ofbnet, dnet, lnet and jnet network fac-
tors. We can observe that at less severe network conditions
(< GGGG >, < GAGG >, < GGAG >, < GAGA >,
< GGPG >, < GGGP >), the decrease in the S-MOS and I-
MOS rankings is comparable. This suggests that the human sub-
jects’ QoE was similar with or without interaction in test cases
with these less severe network conditions. However, at relatively
more severe network conditions (< GAPG >, < GGPA >,
< GGAP >, < GAPA >, < GGPP >, < AGPP >,
< PPGA >, < PGPP >), the I-MOS rankings decrease
quicker than the S-MOS rankings. Hence, the I-MOS rankings
capture the perceivable interaction difficulties faced by the hu-
man subjects during the interactive test cases due to both exces-
sive delays as well as due to impaired audio and video.

Fig. 9. Comparison of Streaming MOS (S-MOS) and Interactive MOS
(I-MOS)

Fig. 10. Comparison of average S-MOS of Expert, General and Novice
human subjects

As explained in Section IV, the end-user QoE varies based on
the users’ experience-levels with the VVoIP technology. Figure
10 quantitatively shows the differences in the average values of
S-MOS rankings provided by the Expert, General and Novice
human subjects for Goodjnet performance level and with in-
creasing network condition severity. Although there are minor
differences in the average values for a particular network con-
dition, we can observe that the S-MOS rankings generally de-
crease with the increase in network condition severity regardless
of the human subject category.

Fig. 11. Comparison of average, lower bound, and upper bound S-MOS
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To estimate the possible variation range around the average
qmos ranking influenced by the human subject category for a
given network condition, we determine additionalqmos types
that correspond to the25th percentile and75th percentile of
the S-MOS and I-MOS rankings. We refer to these additional
qmos types as “lower bound” and “upper bound” S-MOS and
I-MOS. Figure 11 quantitatively shows the differences in the
upper bound, lower bound and average values of S-MOS rank-
ings provided by the human subjects for Goodjnet performance
level and with increasing network condition severity. We ob-
served similar differences in the upper bound, lower bound and
averageqmos rankings for both S-MOS and I-MOS under other
network conditions as well but those observations are not in-
cluded in this paper due to space constraints.

Based on the above description of average, upper bound and
lower boundqmos types for S-MOS and I-MOS rankings, we
require six sets of regression surface model parameters foron-
line estimation of GAP-Modelqmos rankings. To estimate the
regression surface model parameters, we observe the diagnos-
tic statistics pertaining to the model fit adequacy obtainedby
first-order and second-order multiple-regression on the stream-
ing and interactiveqmos rankings in the training data. The di-
agnostic statistics for the first-order multiple-regression show
relatively higher residual error compared to the second-order
multiple-regression due to lack-of-fit and lower coefficient of
determination (R-sq) values. Note that the R-sq parameter indi-
cates how much variation of the response i.e.,qmos is explained
by the model. The R-sq values were less than 88% in the first-
order multiple-regression and greater than 97% in the second-
order multiple-regression. Hence, the diagnostic statistics sug-
gest that a quadratic model better represents the curvaturein
the I-MOS and S-MOS response surfaces than a linear model.
Table 3 shows the significant (non-zero) quadratic regression
model parameters for the six GAP-Modelqmos types, whose
general representation is given as follows:

qmos = C0 + C1bnet + C2dnet + C3lnet + C4jnet

+C5l
2

net + C6j
2

net + C7dnetlnet + C8lnetjnet (6)

V. Framework Implementation and its Application

The salient components and workflows of the GAP-Model
based framework were described briefly in Section 1 using the
illustration shown in Figure 2. We now describe the details of
the framework implementation. The implementation basically
features the Vperf tool to which a test request can be input by
specifying the desired VVoIP session information. The VVoIP
session information pertains to the session’s peak video encod-
ing rate i.e., 256, 384 or 768 Kbps dialing speed and the session
type i.e., streaming or interactive. Given a set of such inputs,
Vperf initiates a test where probing packet trains are generated
to emulate traffic with the videoalev corresponding to the input
dialing speed. The probing packet train characteristics are based
on a VVoIP traffic model that specifies the instantaneous packet
sizes and inter-packet times for a given dialing speed. Details
of the VVoIP traffic model used in Vperf can be found in [5].
If the test request is of streaming type, Vperf generates probing
packet trains only one-way (e.g., Side-A to Side-B in Figure2),

whereas, if the test request is of interactive type, Vperf generates
probing packet trains both-ways i.e., between Side-A to Side-B
and between Side-B to Side-A.

Based on the emulated traffic performance during the test,
Vperf continuously collects online measurements of thebnet,
dnet, lnet and jnet network factors on a per-second basis. For
obtaining statistically stable measures, the online measurements
are averaged over a test durationδt. After test durationδt,
the obtained network factor measurements are plugged into the
GAP-Model closed-form expressions. Subsequently, the online
qmos rankings are instantly output in the form of a test report by
the Vperf tool. Note that if the test request is of streaming type,
the test report is generated on the test initiation side withthe
S-MOS rankings. However, if the test request is of interactive
type, two test reports are generated, one at Side-A and another
at Side-B with the corresponding side’s I-MOS rankings. The
Side-A test report uses the network factor measurements col-
lected on the Side-A to Side-B network path, whereas, the Side-
B test report uses the network factor measurements collected on
the Side-B to Side-A network path.

The GAP-Model based framework can be leveraged in so-
phisticated network control and management applications that
aim at achieving optimal VVoIP QoE on the Internet. For ex-
ample, the framework can be integrated into the widely-used
Network Weather Service (NWS) [32]. Currently, NWS is be-
ing used to perform real-time monitoring and performance fore-
casting of network bandwidth on several network paths simul-
taneously for improving QoS of distributed computing. With
the integration of our framework, NWS can be enhanced to
perform real-time monitoring and performance forecastingof
VVoIP QoE. The VVoIP QoE performance forecasts can be used
by call admission controllers that manage Multi-point Control
Units (MCUs), which are required to setup interactive video-
conference sessions involving three or more participants.The
MCUs combine the admitted voice and video streams from par-
ticipants and generate a single conference stream that is mul-
ticast to all the participants. If a call admission controller se-
lects problematic network paths between the participants and
MCUs, the perceptual quality of the conference stream could
be seriously affected by impairments such as video frame freez-
ing, voice drop-outs, and even call-disconnects. To avoid such a
problem, the call admission controllers can consult the enhanced
NWS to find the network paths that can deliver optimal VVoIP
QoE. In addition, the VVoIP QoE forecasts from the enhanced
NWS can be used to monitor whether a current selection of net-
work paths is experiencing problems that may soon degrade the
VVoIP QoE severely. In such cases, the call admission con-
trollers can dynamically change to alternate network pathsthat
have been identified by the enhanced NWS to provide optimal
VVoIP QoE for the next forecasting period. The dynamic se-
lection of network paths by the call admission controller can be
enforced in the Internet by using traffic engineering techniques
such as MPLS explicit routing or by exploiting path diversity
based on multi-homing or overlay networks [33].

VI. Performance Evaluation

In this section, we evaluate the performance of our proposed
GAP-Model for online VVoIP QoE estimation.
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Table 3. Regression surface model parameters for the six GAP-Model qmos types
Type C0 C1 C2 C3 C4 C5 C6 C7 C8

S-MOS 2.7048 0.0029 -0.0024 -1.4947 -0.0150 0.2918 0.0001 0.0004 0.0055
S-MOS-LB 2.9811 0.0023 -0.0034 -1.8043 -0.0111 0.3746 0.0001 0.0005 0.0069
S-MOS-UB 1.7207 0.0040 -0.0031 -1.4540 -0.0073 0.2746 0.0001 0.0004 0.0043

I-MOS 3.2247 0.0024 -0.0032 -1.3420 -0.0156 0.2461 0.0001 0.0002 0.0058
I-MOS-LB 3.3839 0.0017 -0.0032 -1.3893 -0.0177 0.2677 0.0001 0.0002 0.0055
I-MOS-UB 3.5221 0.0021 -0.0026 -1.3050 -0.0138 0.2614 0.0001 0.0001 0.0053

We first study the characteristics of the GAP-Modelqmos

rankings and compare it with theqmos rankings in the train-
ing data under the same range of network conditions. Next,
we validate the GAP-Modelqmos rankings using a new set of
tests involving human subjects. In the new tests, we use net-
work condition configurations that were not used for obtaining
the trainingqmos rankings and thus evaluate the QoE estimation
accuracy of the GAP-Model for other network conditions. Fi-
nally, we compare the online GAP-Modelqmos rankings with
theqmos rankings obtained offline using the PSNR-mapped-to-
MOS technique.

A. GAP-Model Characteristics

Given that we have four factorsbnet, dnet, lnet and jnet that
affect theqmos rankings, it is impossible to visualize the impact
of all the factors on theqmos rankings. For this reason, we vi-
sualize the impact of the training S-MOS and I-MOS rankings
using an example set of 3-d graphs. The example set of graphs
are shown in Figures 12 and 14 for increasinglnet andjnet val-
ues. In these Figures, thebnet anddnet values are in the Good
performance levels and hence their effects on theqmos rankings
can be ignored. We can observe that each of the S-MOS and I-
MOS response surfaces are comprised of only nine data points,
which correspond to the threeqmos response values for GAP
performance level values oflnet and jnet configured in the test
cases. Expectedly, theqmos values decrease as thelnet andjnet

values increase. The rate (shown by the curvature) and magni-
tude (z-axis values) of decrease ofqmos values with increase in
the lnet andjnet values is comparable in both the streaming and
interactive test cases. Figures 13 and 15 show the corresponding
GAP-Model S-MOS and I-MOS rankings for increasing values
of lnet andjnet in the same ranges set in the training test cases.
We can compare and conclude that the GAP-Modelqmos ob-
tained using the quadratic fit follow the trend and curvilinear
nature of the trainingqmos noticeably.

To visualize the impact of the other network factors on the
GAP-Model qmos, let us look at another example set of 3-d
graphs shown in Figures 16 and 17. Specifically, they show the
impact of lnet anddnet as well aslnet andbnet on the S-MOS
rankings, respectively. Note that the 3-d axes in these graphs are
rotated to obtain a clear view of the response surfaces. We can
observe from Figure 16 that the rate and magnitude of decrease
in theqmos rankings is higher with the increase inlnet values as
opposed to the decrease with the increase in thednet values. In
comparison, the rate of decrease in theqmos rankings with the
decrease in thebnet values as shown in Figure 17 is lower than
with the increase in thelnet values.

We remark that the above observations relating to the impact
of network factors on theqmos rankings presented in this section
are similar to the observations presented in related works such
as [19] [24] [25].

B. GAP-Model Validation

As shown in the previous subsection, the GAP-Modelqmos

rankings are obtained by extrapolating the corresponding train-
ing qmos rankings response surfaces. Given that the training
qmos rankings are obtained from human subjects for a limited
set of network conditions, it is necessary to validate the per-
formance of the GAP-Modelqmos rankings for other network
conditions that were not used in the closed-network test cases.
For the validation, we conduct a new set of tests on the same
network testbed and using the same measurement methodology
described in Section 4.2. However, we make modifications in
the human subject selection and in the network condition con-
figurations. For the new tests, we randomly select 7 human sub-
jects from the earlier set of 21 human subjects. Recall, ITU-T
suggests a minimum of 4 human subjects as compulsory for sta-
tistical soundness in determiningqmos rankings for a test case.
Also, we configure NISTnet with the randomly chosen values of
network factors within the GAP performance levels as shown in
Table 4. Note that these network conditions are different from
the network conditions used to obtain the trainingqmos rank-
ings. We refer to theqmos rankings obtained for the new tests
involving theStreaming-Kellyvideo sequence as “Validation-S-
MOS" (V-S-MOS). Further, we refer to theqmos rankings ob-
tained for the new tests involving theInteractive-Kellyvideo se-
quence as “Validation-I-MOS" (V-I-MOS).

Figures 18 and 19 show the average of the 7 human-subjects’
V-S-MOS and V-I-MOS rankings obtained from the new tests
for each network condition in Table 4. We can observe that the
V-S-MOS and V-I-MOS rankings lie within the upper and lower
bounds and are close to the average GAP-Modelqmos rankings
for the different network conditions. Thus, we validate theGAP-
Modelqmos rankings and show that they closely match the end-
user VVoIP QoE for other network conditions that were not used
in the closed-network test cases.

Table 4. Values of network factors for GAP-Model validation

experiments
Network Factor Good Acceptable Poor

dnet 100 ms 200 ms 600 ms
lnet 0.3 % 1.2 % 1.65 %
jnet 15 ms 40 ms 60 ms
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Fig. 12. Training S-MOS response surface showing lnet and jnet

effects
Fig. 13. GAP-Model S-MOS response surface showing lnet and

jnet effects

Fig. 14. Training I-MOS response surface showing lnet and jnet

effects
Fig. 15. GAP-Model I-MOS response surface showing lnet and

jnet effects

Fig. 16. GAP-Model S-MOS response surface showing lnet and
dnet effects

Fig. 17. GAP-Model S-MOS response surface showing lnet and
bnet effects

Fig. 18. Comparison of S-MOS with Validation-S-MOS (V-S-MOS)

C. GAP-Model qmos Comparison with PSNR-mapped-to-MOS
qmos

Herein, we compare the GAP-Modelqmos rankings with the
PSNR-mapped-to-MOSqmos (P-MOS) rankings. For estimat-
ing the P-MOS rankings, we use the NTIA’s VQM software [34]
that implements the algorithm ratified by ITU-T in their J.144
Recommendation [2] and the ANSI in their T1.801.03 Stan-
dard [16]. The VQM P-MOS rankings only measure the degra-
dation of video pixels caused due to frame freezing, jerky mo-
tion, blurriness and tiling in the reconstructed video sequence
and cannot measure interaction degradation. Hence, we only
compare the GAP-Model S-MOS rankings with the VQM P-
MOS rankings for different network conditions. To obtain the
P-MOS rankings, we use the same network testbed that was used
for the closed-network test cases and configure it with the net-
work conditions shown in Table 4. For each network condition,
we obtain 7 reconstructedStreaming-Kellyvideo sequences.
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Fig. 19. Comparison of I-MOS with Validation-I-MOS (V-I-MOS)

The process involved in obtaining the reconstructed
Streaming-Kellyvideo sequences includes capturing raw video
at the receiver-side using a video-capture device, and editing
the raw video for time and spatial alignment with the origi-
nal Streaming-Kellyvideo sequence. The edited raw video se-
quences further need to be converted into one of the VQM soft-
ware supported formats: RGB24, YUV12 and YUY2. When
provided with an appropriately edited original and reconstructed
video sequence pair, the VQM software performs a computa-
tionally intensive per-pixel processing of the video sequences
and produces a P-MOS ranking. Note that the above process to
obtain a single reconstructed video sequence and the subsequent
P-MOS ranking using the VQM software consumes several tens
of minutes and requires a PC with at least 2 GHz processor, 1.5
GB of RAM and 4 GB free disk space.

Fig. 20. Comparison of S-MOS with P-MOS

Figure 20 shows the average of 7 P-MOS rankings obtained
from VQM software processing of 7 pairs of original and recon-
structed video sequences for each network condition in Table
4. We can observe that the P-MOS rankings lie within the up-
per and lower bounds and are close to the average GAP-Model
S-MOS rankings for the different network conditions. Thus,
we show that the online GAP-Model S-MOS rankings that are
obtained almost instantly with minimum computation closely
match the offline P-MOS rankings, which are obtained after a
time-consuming and computationally intensive process.

VII. Conclusion

In this paper, we proposed a novel framework that can provide
online objective measurements of VVoIP QoE for both stream-
ing as well as interactive sessions on network paths: (a) with-
out end-user involvement, (b) without requiring any video se-
quences, and (c) considering joint degradation effects of both
voice and video. The framework primarily is comprised of: (i)
a Vperf tool that emulates actual VVoIP-session-traffic to pro-
duce online measurements of network conditions in terms of
network factors viz., bandwidth, delay, jitter and loss, and (ii)
a psycho-acoustic/visual cognitive model called “GAP-Model”
that uses the Vperf measurements to instantly estimate VVoIP
QoE in terms of “Good”, “Acceptable” or “Poor” (GAP) per-
ceptual quality. We formulated the GAP-Model’s closed-form
expressions based on an offline closed-network test methodol-
ogy involving 21 human subjects ranking QoE of streaming and
interactive video clips in a testbed featuring all possiblecombi-
nations of the network factors in their GAP performance levels.
The offline closed-network test methodology leveraged testcase
reduction strategies that significantly reduced a human subject’s
test duration without compromising the rankings data required
for adequate model coverage.

The closed-network test methodology proposed in this paper
focused on the H.263 video codec at 768 Kbps dialing speed.
However, it can be applied to derive additional variants of the
GAP-Model closed-form expressions for other video codecs
such as MPEG-2 and H.264, and higher dialing speeds. Ad-
ditional variants need to be dervied for accurately estimating
end-user VVoIP QoE because the network performance bottle-
necks manifest differently at higher dialing speeds and arehan-
dled differently by other video codecs. If the additional variants
are known, they can be leveraged for “on-the-fly” adaptationof
codec bit rates and codec selection in end-points.
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