
Smart Card HOTP
implementation

inexpensive hardware based one time passwords

Agenda
One Time Passwords

HOTP Protocol

Smart Cards and Readers

PAM

Open source implementation of
hardware based OTP system.

OTP
One Time Passwords are passwords
that can only be used once.

Generated when needed for each
login session or printed out (S/Key)
and carried with you.

S/Key and SecurID are popular
implementations.

S/Key

Text

0: WAY SKI WHOM LIN HALE TEAM
1: BEST SKIT DOSE SEAM FIR TRIG
2: CREW OLIN GAIN ALP CAW ODE
3: ROVE SHE PUN ACE PAP GOAT
4: ANNA MAIL PUG FISK BUCK BLUM
5: FIR PA ALAN FONT WING KISS
6: HERD RAN YAP NECK TOE FUR
7: DENY SMOG LADY REAR MOOR LOST
8: OMIT NEAT PAD HANG THEN MUTE
9: SHUN INN MAT BEAD EVA MUTT
10: BILE COIL HEEL VET HILT LEAK

Why OTP’s
Given the opportunity people will
choose easy to guess passwords.

Password sniffers are a commodity.

“Use ssh or encrypted VPN’s
everywhere” isn’t practical. Still
have a lot of gear that doesn’t
support ssh or VPN’s.

Why OTP’s

Staff tend to get a lot of passwords
to remember (POP Mail password,
login host, routers switches, terminal
servers, encrypted SSH keys, power
controllers, Windows logins, etc, etc).

When one password doesn’t work try
another.

Why OTP’s

Telnet somehost. Login fails because
you typed your “encrypted
connections only” bastion host
password instead of the one for
“somehost” Now your secure
password has been sent in the clear.

Common scenario

A: Encrypted
logins only

(bastion host)

B: Unencrypted
Telnet only

Send password for A by
mistake. Gets sniffed and
associated with username.

or worse used the same
password in both places.

 Internet

secure insecure

Enterprise
Network

Why OTP’s
Immune to sniffers - password only
works once.

Immune to bad passwords.

Two Factor Authentication -
“something you have” a device to
generate the OTP and “something
you know” a PIN or reusable
password.

OTP not a cure-all
Unencrypted/Unauthenticated
sessions can still be hijacked,
although they can’t login again.

If the device you’re logging in from
has been r00t3d you lose. Your
session can be hijacked after or
between authentication.

Barriers to OTP
deployment.

S/Key is free, why doesn’t everyone
use it. Not for the non tech savvy.

Secure-ID or other vendors with
proprietary solutions. Costs a lot,
especially if you’re just trying to
lock down your personal PC for
remote access.

OTP requirements
Low per user cost and availability in
small quantities -- 1.

Useable by non tech savvy staff.

Not OS specific, don’t want to
maintain drivers and/or client for
Windows, Mac, Linux, *nix.

Open Source, Open Standard.

Possible solutions.

Smart card + reader + HOTP + small
library + pam module.

Smart card and reader issued to
users. PAM module runs on login
server.

Balance Reader

Used in Europe for E-cash

Available in small quantities (1)

Not very flexible - sends command
to smart card asking what to display.

Spyrus PAR II

PAR II is programmable reader -
firmware written to support
BasicCard HOTP implementation.

Spyrus PAR II

A lot more potential since reader is
programmable (PIC 16F877).

Can support multiple keys (login
hosts) per card/reader - about 100.

PIN is required before use.

Available in small quantities (1)

Spyrus PAR II

Multiple keys / card : Each system
has a key per user. No central
server / network requirements.

User selects hostname from menu to
generate HOTP after entering PIN.

Smart Cards
A few varieties. Contact and
Contactless (RFID). May have just
EEPROM (memory card) or a
microcontroller with EEPROM and
RAM.

Many vendors. Some have a small
operating system, some have a large
OS (Java based cards).

Smart Cards

ISO-7816-* defines the physical
characteristics, electrical signals and
transmission protocols.

PC/SC - defines low level interface
and API.

What’s in the card and running on it
are vendor specific.

BasicCard

ZC 3.9 inexpensive contact type
microcontroller based card with 256
bytes of RAM and 8K EEPROM.

IDE which allows you to program it
in a BASIC like language (free)

Includes Crypto Library.

What’s HOTP

Internet draft detailing an algorithm
to generate One Time Passwords
based on HMAC.

HOTP(K,C) = Truncate(HMAC-SHA-1
(K,C))

HOTP(K,C) = Truncate
(HMAC-SHA-1(K,C))
K is a secret key, C is a counter
which increases with each use,
Truncate() transforms the 160 bit
result into something that can be
typed by hand, HMAC-SHA-1 is a
secure message authentication code

HMAC
Keyed-Hashing for Message
Authentication

Apply a secure hash (MD5, SHA-160,
etc) to a Key and Message. Result is
a digital signature of the Message
which can be validated by parties
which know the Key.

HMAC

A third party can alter the Message
but they can’t generate a valid
HMAC without the Key.

Alternately for a given Message only
parties which know the Key can
generate a valid HMAC.

HMAC

ipad = 0x36 repeated B times (B is
the block size of the hash function)

opad = 0x5C repeated B times

H(K XOR opad, H(K XOR ipad, text))
where H is the hash function. Will
compute the HMAC of (K,text).

HOTP

Requires a shared Key. One copy is
on the Smart Card, one is on the
authentication server.

Requires a loosely synchronized
shared Count.

HOTP

User is presented with a challenge.
Uses smart card + reader to display
HMAC(K,C). Smart Card increments
count which is stored in NV memory.

Server computes HMAC(K,C) for user.

HOTP
If the HMAC entered by user
matches that of the server then
server increments Count and user is
authenticated.

If there is not a match, server
repeats adding 1 to the Count up to
Window times (window = 10).

HOTP
If after window tries and there is
no match, user is not authenticated.

Server stores database of
{Username,Count,Key,Last,Status}.

Note, there is not a requirement for
a separate authentication server,
although it could be implemented
this way.

HOTP
Last is time, used to thwart brute
force attacks. Authentication
attempts policed to 1 per second. If
truncated HMAC is 40 bits then on
average will take 17,000 years to
brute force an account.

Status allows disabling of login or
HOTP requirement on per user basis.

Getting Started
Get a ZC3.9 Smart Card, balance
reader, and a PC/SC compatible
interface. Or just get the BasicCard
development kit for about $80.

Smart Card - $3.10/user

Balance Reader - $12.35/user or
Spyrus PARII ($60/user)

PC Interface - $10 - $50 (one time)

Getting Started

Download HOTP software to Smart
Card with PC Interface and BCLOAD
program (or IDE).

Add a user to the database with
otp-control (also creates a key).

Getting Started

If using the Spyrus reader download
the HOTP firmware. Requires the
use of a special RS232 cable
available from Spyrus and “PIC
downloader 1.08”

Getting Started
Program the Key(s) into the Smart
Card with HOTPT.EXE (to do this
requires a second key that’s compiled
into the HOTPC image.

Configure PAM to use pam_otp.so

sshd auth requisite pam_unix.so try_first_pass
sshd auth required pam_otp.so expose_account,display_count

Getting Started
Try to login. Use Smart Card and
Balanace reader or Syprus reader to
generate challenge response.

% ssh 10.0.0.1
Password: <secret>
HOTP Challenge (3): 143abc589a
Last login: Wed Jun 8 20:15:16 2005 from dev1.eng.oar.ne
Copyright (c) 1980, 1983, 1986, 1988, 1990, 1991, 1993, 1994
 The Regents of the University of California. All rights reserved.

FreeBSD 4.11-STABLE (FIVIR) #1: Sun Mar 6 03:08:47 GMT 2005

Welcome to FreeBSD!

Software

http://www.splintered.net/sw/otp

Deployment

~40 user deployment at OARnet
with Spyrus PAR2 readers. Max 4
keys/systems per card.

Balance readers are still useful since
they are smaller and fit better on
key chain.

Deployment

Trampoline BSD servers (redundant
locations) with HOTP required on all
logins only in-band access to OARnet
routers, switches, and Unix hosts.

VPN deployment will follow for other
services not easily supported via ssh.

Deployment

Added OpenVPN authentication
module plug-in.

Added otp-cadmin - Unix command
line utility to replace Windows based
HOTP Terminal Application. Uses
PCSC standard card API.

Summary

Low startup cost.

Can be deployed in small quantities
(1).

No requirement for network server -
no central point of failure or
requirement for operational network.

Summary

~ 100 keys (systems) per card when
using Spyrus reader.

SSH support via PAM module.

OpenVPN support via plug-in
authentication module.

Contact

Mark Fullmer
maf@splintered.net

http://www.splintered.net/sw/otp

